homehome Home chatchat Notifications


Scientists build electrical circuit out of four-stranded DNA

The research could inspire a novel class of microelectronics based on DNA.

Tibi Puiu
February 27, 2018 @ 1:46 am

share Share

Besides carrying the genetic blueprint for all living organisms, DNA is also a  versatile building block for practical affairs. Scientists are experimenting, for instance, with DNA as a storage device. One promising method can encode 215 petabytes of data — twice as much as Google and Facebook combined hold in their servers — on a single gram of DNA. Now, American researchers have found a way to use DNA in microelectronic circuits after they showed how to design, create, and use a DNA circuit capable of splitting and combining current. It works much like an adapter that can connect multiple appliances to a wall outlet.

Scientists tested a DNA circuit capable of splitting and combining current, much like an adapter that can connect multiple appliances to a wall outlet. Credit: Limin Xiang.

Scientists tested a DNA circuit capable of splitting and combining current, much like an adapter that can connect multiple appliances to a wall outlet. Credit: Limin Xiang.

DNA has remarkable self-assembly properties, which scientists previously exploited to great effect to assemble graphene transistors and to design new drugs. This works rather easily because the molecule’s four nucleotide bases (A, T, C, and G) can be programmed to self-assemble into the iconic double-helices, snapping together like matched puzzle pieces, A always bonding with T and C with G. Indeed, various 2-D and 3-D DNA structures have been synthetically designed by scientists in the past using this straightforward principle.

The double-helix molecule can also conduct electric charge over considerable distances. Combine this with self-assembly and you’ve got a very promising candidate for niche applications in electronics such as nanobots, photonic devices, or various tiny electronic circuits.

“The ability of DNA to transport electrical charge has been under investigation for some time,” said Nongjian “N.J.” Tao, a co-author of the new study researchers at Arizona State University. “Splitting and recombining current is a basic property of conventional electronic circuits. We’d like to mimic this ability in DNA, but until now, this has been quite challenging.”

There’s one problem though: In its most common duplex form, DNA poorly splits current into three or more terminals as the charge tends to dissipate at the splitting junctions or convergence points. This doesn’t bode well for electronics applications. However, scientists at Arizona State University, New York University, and Duke University, used a special form of DNA known as G-quadruplex (G4) DNA. As the name implies, G4-DNA is composed of four rather than two strands of DNA, which are rich in the nucleotide guanine (G).

“DNA is capable of conducting charge, but to be useful for nanoelectronics, it must be able to direct charge along more than one path by splitting or combining it. We have solved this problem by using the guanine quadruplex (G4) in which a charge can arrive on a duplex on one side of this unit and go out either of two duplexes on the other side” says Peng Zhang, an assistant research professor of chemistry at Duke University and a co-author of the new study.

“This is the first step needed to transport charge through a branching structure made exclusively of DNA. It is likely that further steps will result in successful DNA-based nanoelectronics that include transistor-like devices in self-assembling ‘pre-programmed’ materials,” Zhang says.

Guanine-rich quadruplex DNA occurs naturally, a configuration that can be found in telomeres — the ends of linear chromosomes, which play a key role in aging. Some research is targeting G4 quadruplexes with drugs for therapeutic reasons. Previously, research showed that DNA quadruplexes in telomeres decrease the activity of an enzyme responsible for telomere length and which is involved in 85 percent of all cancers.

Among other things, G4 DNA — stacked guanine bases that form hydrogen bonds with their immediate neighbors — have improved charge transport properties. This allowed the researchers to used G4 DNA and double-stranded wires to form the terminals for either splitting or merging electrical current flow. Previously, scientists who tried to make Y-shaped electrical junctions with conventional double-helix DNA failed because of the inherent poor charge transport properties.

The conductance of charge of the G4-DNA nanostructure was measured with a scanning tunneling microscope (STM), whose tip came in and out of contact with the molecule, breaking and reforming the junction while the current through each terminal is recorded. This “break junction” method allowed the researchers to fine-tune all sorts of prototype circuits to achieve maximal charge transport.

Besides opening the doors for innovative G4-based electronics, the paper published in Nature Nanotechnology sheds new light on the way nature maintains genetic integrity within cells, and could also teach us how various diseases break down DNA error-correcting mechanisms.

share Share

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

We Know Sugar Is Bad for Your Teeth. What About Artificial Sweeteners?

You’ve heard it a thousand times: sugar is terrible for your teeth. It really is. But are artificial sweeteners actually any better? The short answer? Yes—artificial sweeteners don’t feed the bacteria that cause cavities. But here’s the twist: many of the sugar-free products they’re used in can still damage your teeth in a different way—through […]