homehome Home chatchat Notifications


Drag-and-drop and synthetic DNA self-assembly makes drug design easier

Researchers at  Parabon NanoLabs have developed an unique tool that allows scientists to use an intuitive drag-and-drop computer interface, much like in any other 3-D CAD software like Catia or AutoCAD, together with  DNA self-assembly techniques, to develop and test new drugs much faster. Called the  Parabon Essemblix Drug Development Platform, the tool can be used to design molecular pieces […]

Tibi Puiu
December 6, 2012 @ 12:20 pm

share Share

Researchers at  Parabon NanoLabs have developed an unique tool that allows scientists to use an intuitive drag-and-drop computer interface, much like in any other 3-D CAD software like Catia or AutoCAD, together with  DNA self-assembly techniques, to develop and test new drugs much faster.

A collection of pharmaceutical molecules is shown after self-assembly. (c) Parabon NanoLabs

A collection of pharmaceutical molecules is shown after self-assembly. (c) Parabon NanoLabs

Called the  Parabon Essemblix Drug Development Platform, the tool can be used to design molecular pieces with specific, functional components. Some molecules are currently used to identify cancer cells, others are capable of latching to cancer cells, while others kill them. Combining them renders mixed effects. After the design is saved, a cloud supercomputing platform that uses proprietary algorithms to search for specific sets of DNA sequences that can self-assemble those components. With a proper sequence in place that works, scientists chemically synthesize trillions of identical copies of the designed molecules. The development phase of the drug is now cut to weeks even days instead of months or even years compared to conventional trial and error.

“We can now ‘print,’ molecule by molecule, exactly the compound that we want,” says Steven Armentrout, the principal investigator on the NSF grants and co-developer of Parabon’s technology.

“What differentiates our nanotechnology from others is our ability to rapidly, and precisely, specify the placement of every atom in a compound that we design.”

The new Parabon technology offers precise control over size, charge and the relative placement of components. In vivo experiments, funded by the NSF SBIR award, validated the approach, and Parabon filed a provisional patent for its methods and compounds on May 4, 2011. The final applicationwas published in 2012.

Parabon Essemblix process (credit: Parabon NanoLabs)

Parabon Essemblix process – click for zoom (credit: Parabon NanoLabs)

When designing a therapeutic compound, we combine knowledge of the cell receptors we are targeting or biological pathways we are trying to affect with an understanding of the linking chemistry that defines what is possible to assemble,” says Hong Zhong, senior research scientist at Parabon and a collaborator on the grants. “It’s a deliberate and methodical engineering process, which is quite different from most other drug development approaches in use today.”

via National Science Foundation.

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

A Provocative Theory by NASA Scientists Asks: What If We Weren't the First Advanced Civilization on Earth?

The Silurian Hypothesis asks whether signs of truly ancient past civilizations would even be recognisable today.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

Researchers engineer a fungus that kills mosquitoes during mating, halting malaria in its tracks