homehome Home chatchat Notifications


Drag-and-drop and synthetic DNA self-assembly makes drug design easier

Researchers at  Parabon NanoLabs have developed an unique tool that allows scientists to use an intuitive drag-and-drop computer interface, much like in any other 3-D CAD software like Catia or AutoCAD, together with  DNA self-assembly techniques, to develop and test new drugs much faster. Called the  Parabon Essemblix Drug Development Platform, the tool can be used to design molecular pieces […]

Tibi Puiu
December 6, 2012 @ 12:20 pm

share Share

Researchers at  Parabon NanoLabs have developed an unique tool that allows scientists to use an intuitive drag-and-drop computer interface, much like in any other 3-D CAD software like Catia or AutoCAD, together with  DNA self-assembly techniques, to develop and test new drugs much faster.

A collection of pharmaceutical molecules is shown after self-assembly. (c) Parabon NanoLabs

A collection of pharmaceutical molecules is shown after self-assembly. (c) Parabon NanoLabs

Called the  Parabon Essemblix Drug Development Platform, the tool can be used to design molecular pieces with specific, functional components. Some molecules are currently used to identify cancer cells, others are capable of latching to cancer cells, while others kill them. Combining them renders mixed effects. After the design is saved, a cloud supercomputing platform that uses proprietary algorithms to search for specific sets of DNA sequences that can self-assemble those components. With a proper sequence in place that works, scientists chemically synthesize trillions of identical copies of the designed molecules. The development phase of the drug is now cut to weeks even days instead of months or even years compared to conventional trial and error.

“We can now ‘print,’ molecule by molecule, exactly the compound that we want,” says Steven Armentrout, the principal investigator on the NSF grants and co-developer of Parabon’s technology.

“What differentiates our nanotechnology from others is our ability to rapidly, and precisely, specify the placement of every atom in a compound that we design.”

The new Parabon technology offers precise control over size, charge and the relative placement of components. In vivo experiments, funded by the NSF SBIR award, validated the approach, and Parabon filed a provisional patent for its methods and compounds on May 4, 2011. The final applicationwas published in 2012.

Parabon Essemblix process (credit: Parabon NanoLabs)

Parabon Essemblix process – click for zoom (credit: Parabon NanoLabs)

When designing a therapeutic compound, we combine knowledge of the cell receptors we are targeting or biological pathways we are trying to affect with an understanding of the linking chemistry that defines what is possible to assemble,” says Hong Zhong, senior research scientist at Parabon and a collaborator on the grants. “It’s a deliberate and methodical engineering process, which is quite different from most other drug development approaches in use today.”

via National Science Foundation.

share Share

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

We Know Sugar Is Bad for Your Teeth. What About Artificial Sweeteners?

You’ve heard it a thousand times: sugar is terrible for your teeth. It really is. But are artificial sweeteners actually any better? The short answer? Yes—artificial sweeteners don’t feed the bacteria that cause cavities. But here’s the twist: many of the sugar-free products they’re used in can still damage your teeth in a different way—through […]

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

Tooth loss is linked to cognitive decline, study in India shows

The connection between tooth loss and cognitive decline may surprise you.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.