homehome Home chatchat Notifications


Water-repelling surface makes dew droplets so small, they're practically invisible

The breakthrough could help cool the hotspots of high-performance electronics.

Tibi Puiu
July 31, 2017 @ 4:05 pm

share Share

Virginia Tech researchers just reported a breakthrough that could help remove condensation much more efficiently than ever before. The study suggests water-repelling surfaces can be tuned such that the expelled water droplets become almost imperceptible to the naked eye.

Hydrophobic surfaces covered in nanopillars that resemble stalagmites on a cave's floor can control when a dew droplet will jump. Taller and slender pillers can make droplets as small as two micrometers jump off the surface of a material. Credit: Virginia Tech.

Hydrophobic surfaces covered in nanopillars that resemble stalagmites on a cave’s floor can control when a dew droplet will jump. Taller and slender pillars can make droplets as small as two micrometers jump off the surface of a material. Credit: Virginia Tech.

In 2013, biologists showed that cicadas — the busy insects that fill summer nights with their mating calls — keep their wings fresh and clean with nothing but a spritz of dew drops. The wings are essentially covered in superhydrophobic surfaces that make dew drops “jump” by themselves, carrying contaminants like dust with them. That’s a very nifty trick, one that scientists are currently exploring to cool hotspots in high-performance technologies.

Jonathan Boreyko, an assistant professor in the Department of Biomedical Engineering and Mechanics in the Virginia Tech College of Engineering, has been studying jumping dew droplets since he was in grad school. His research suggests that dew droplets jump from water-repellent surfaces only after they reach a threshold diameter of about 10 micrometers. It was never unclear why until Boreyko and colleagues finally got the bottom of things.

The team designed and tested six different hydrophobic surfaces, all comprised of tiny nanopillars that are reminiscent of stalagmites on a cave’s floor. After testing each surface one by one, the researchers found that the critical size of the jumping dew droplet can be fine tuned if you tweak three parameters: the height, diameter, and pitch of the nanopillars.

“These results, correlated with a theoretical model, revealed that the bottleneck for jumping is how the droplets inflate inside of the surface after they first form,” Boreyko said in a statement.

The taller and slender the nanopillars are, the smaller the water droplets that jump off the surface can become, down to an incredible two micrometers. Conversely, short and stout pillars increase the critical size of the jumping water droplets, up to 20 micrometers in the case of this experiment.

Now that we know the jumping droplet phenomena can be fine tuned, companies can design more efficient condensation removal systems.

“We expect that these findings will allow for maximizing the efficiency of jumping-droplet condensers, which could make power plants more efficient and enable robust anti-fogging and self-cleaning surfaces,” Boreyko said. “The ultimate goal is for all dew droplets forming on a surface to jump off before they are even visible to the eye.”

Findings appeared in the journal ACS Nano.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain