homehome Home chatchat Notifications


First stars formed 750 million years after the Big Bang

Determining when stars first started to form through out the early Universe is a matter of great importance for astronomers and astrophysicists looking to understand how the cosmos evolved from its incipient point of origin. Recently, researchers at MIT who have been studying the most distant quasar observed so far found  no discernible trace of heavy […]

Tibi Puiu
December 10, 2012 @ 6:03 pm

share Share

An artist’s rendering of the quasar 3C 279 (credit: European Southern Observatory)

An artist’s rendering of the quasar 3C 279 (credit: European Southern Observatory)

Determining when stars first started to form through out the early Universe is a matter of great importance for astronomers and astrophysicists looking to understand how the cosmos evolved from its incipient point of origin. Recently, researchers at MIT who have been studying the most distant quasar observed so far found  no discernible trace of heavy elements, such as carbon and oxygen. Their findings suggest that stars had yet to be born 750 million years after the Big Bang.

The elements are only formed by stars –  essentially we all come from stars. If these basic building blocks aren’t visible then  the quasar dates to an era nearing that of the universe’s first stars.

After the Big Bang massive amounts of matter and energy were flung, leading to the expansion of the early Universe. In the minutes following the explosion, protons and neutrons collided in nuclear fusion reactions to form hydrogen and helium. Once the Universe cooled, fusion ceased along with the generation of  these primordial elements. It would be until the first stars appeared that heavy elements such as oxygen or carbon could be synthesized.

Lack of these elements in observations suggests that stars hadn’t been formed during that phase of the Universe. So far, the farthest astronomers have gone to study the light of distant objects was 11 billion years – the Universe is 13.7 billion years old, and each time heavy elements were found. Last year scientists discovered  the earliest quasar found so far, which provided a snapshot of our universe during its infancy, a mere 750 million years after the initial explosion that created the universe.

“The first stars will form in different spots in the universe … it’s not like they flashed on at the same time,” says Robert Simcoe, an associate professor of physics at MIT. “But this is the time that it starts getting interesting.”

“[The astrophysics community] sort of hit this wall,” says Simcoe, an astrophysicist at MIT’s Kavli Institute for Astrophysics and Space Research. “When this [quasar] was discovered, we could sort of leapfrog further back in time and make a measurement that was substantially earlier.”

Before stars shone bright

An artist’s rendering of how the most distant quasar found to date would have appeared just 770 million years after the Big Bang (credit: European Southern Observatory/M. Kornmesser)

An artist’s rendering of how the most distant quasar found to date would have appeared just 770 million years after the Big Bang (credit: European Southern Observatory/M. Kornmesser)

Recently MIT astronomers pointed the Magellan Telescope, a massive ground-based telescope in Chile, which they fitted with a carefully designed spectrometer, towards the quasar to study its light spectrum. Each element gives of a pattern, based on how it characteristically absorbs light. Based on this, the scientists found evidence of hydrogen, but no oxygen, silicon, iron or magnesium in the light data.

“[The birth of the first stars] is one of these important moments in the history of the universe,” Simcoe says. “It went from looking like the early universe, which was just gas and dark matter, to looking like it does today, where there are stars and galaxies … it’s the point when the universe started to resemble what it looks like today. And it’s sort of amazing how early that happens. It didn’t take long.”

Other scientists, like John O’Meara, an associate professor of physics at St. Michael’s College in Vermont, believe that more observations of distant quasars is needed in order to confirm the findings.

“Prior to this result, we have not seen regions of the universe this old and devoid of heavy elements, so there was a missing link in our understanding of how the elemental content of the universe has evolved with time,” O’Meara adds. “[This] discovery possibly provides such a rare environment where the universe had yet to form stars.”

Results were published in the journal Nature.

source: MIT

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.

Pregnancy in Space Sounds Cool Until You Learn What Could Go Wrong

Growing a baby in space sounds like science fiction. Here’s why it might stay that way.

Astronomers Spotted a Ghostly Star Orbiting Betelgeuse and Its Days Are Already Numbered

A faint partner explains the red giant's mysterious heartbeat.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.

For the First Time Ever We Can See Planets Starting to Form Around a Star

JWST and ALMA peered through a natural opening in the star’s surrounding cloud to catch the action up close.

Scientists just figured out how to turn moon dirt into water and oxygen just using sunlight

Scientists find a way to turn moon regolith into water, air, and fuel…and that could change space travel.

NASA finally figures out what's up with those "Mars spiders"

They're not actual spiders, of course, but rather strange geological features.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

Scientists Are Racing to Reach a Mysterious World Before It Disappears for 11,000 Years

In 2076, Sedna will make a once-in-11,400-year close pass near the Sun.