homehome Home chatchat Notifications


Closest rogue planet discovered is just 100 light-years away

Like in a scene from a Sci-fi novel, about 100 light years away, somewhere in the constellation Doradus, a planet is travelling around the galaxy by itself, without orbiting a parent star. This “rogue planet“, has a temperature of about 400C and a mass between 4 to 7 times that of Jupiter – close to […]

Dragos Mitrica
November 15, 2012 @ 9:14 am

share Share

Like in a scene from a Sci-fi novel, about 100 light years away, somewhere in the constellation Doradus, a planet is travelling around the galaxy by itself, without orbiting a parent star. This “rogue planet“, has a temperature of about 400C and a mass between 4 to 7 times that of Jupiter – close to the mass limit beyond which it would have become a brown dwarf.

The object, that so far has the captivating name of CFBDSIR2149, has been discovered while observing a region of space occupied by a group of about 30 stars called the AB Doradus Moving Group – a group of stars that have formed at the same time – most likely from the same initial gaseous nebulae. This fact was derived from the similarities in the composition, age and the similar direction of movement through space of the stars – which place the age of this group somewhere between 50 and 120 million years old – a reasonably young star group.

Artist's impression of the "rogue planet" CFBDSIR2149 discovered in the AB Doradus group of moving stars. (European Southern Observatory/AFP)

Artist’s impression of the “rogue planet” CFBDSIR2149 discovered in the AB Doradus group of moving stars. (European Southern Observatory/AFP)

The initial observations placed the object in the category of brown dwarfs – a class of sub-stellar objects – that are more massive then the biggest planets – the gas giants, yet they don’t have enough mass to start nuclear fusion. However, further analyses revealed that our object was in fact smaller than this – making it a planet – a gas giant. The whole detection was possible due to the fact that our “rogue” emits light in the infrared wavelengths.

Astronomers said that based on its estimated age, through computer models of planetary evolution, they were able to make further deductions regarding the planet’s mass – 4 to 7 times the mass of Jupiter, and surface temperature of 400 degrees Celsius (750 degrees Fahrenheit).

The planet was discovered during a survey using the infrared cameras of the Canada-France-Hawaii Telescope on Hawaii’s Mauna Kea and the Very Large Telescope (VLT) in Chile, as study co-author Etienne Artigau of the University of Montreal said: “This object was discovered during a scan that covered the equivalent of 1,000 times the [area] of the full moon.

Of course, this is not the first time such a “nomad planet” has been spotted, but this observation is special because it found the closest such object discovered so far – only 100 light years away, the first such planet that is relatively close to our solar system, as study co-author Etienne Artigau put it: “We observed hundreds of millions of stars and planets, but we only found one homeless planet in our neighbourhood“.

A big question in the case of all such rogue planets is how this planet came to be? Maybe it formed inside a solar system, just as any other planet, and got ejected afterwards – through gravitational interaction perhaps with a more massive object entering that system. Or it formed separate from any solar system from the beginning, similar to the formation of a star – through progressive accretion of the gas of a dense nebulae. This question remains open – and perhaps will remain for some time to come.

Philippe Delorme of France’s Institute of Planetology and Astrophysics said: “these objects are important, as they can either help us understand more about how planets may be ejected from planetary systems, or how very light objects can arise from the star formation process.”

The findings were reported in the journal Solar and Stellar Astrophysics.

source: BBC

share Share

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

Stone Age Atlantis: 8,500-Year-Old Settlements Discovered Beneath Danish Seas

Archaeologists took a deep dive into the Bay of Aarhus to trace how Stone Age people adapted to rising waters.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Giant solar panels in space could deliver power to Earth around the clock by 2050

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.