homehome Home chatchat Notifications


Beautiful exoplanet aurorae 1000 times brighter than on Earth

There are few more dazzling sights in the world than that of the great Norther Lights, and in a exercise of brilliant imagination scientists have depicted how an aurorae would look like on huge hot planets. Scientists ran computer models of so-called “hot-Jupiters” placed in close proximity to a sun (a few millions miles away, […]

Tibi Puiu
July 22, 2011 @ 6:17 am

share Share

Aurora Borealis

There are few more dazzling sights in the world than that of the great Norther Lights, and in a exercise of brilliant imagination scientists have depicted how an aurorae would look like on huge hot planets.

Scientists ran computer models of so-called “hot-Jupiters” placed in close proximity to a sun (a few millions miles away, instead of the safe-base 90 million miles distance Earth has behind our sun), which, coupled with a huge magnetic field due to its mass, rendered an incredible aurorae 100 to 1000 times more luminescent than the ones found on Earth.

“I’d love to get a reservation on a tour to see these aurorae!” says Ofer Cohen, a SHINE-NSF postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics (CfA).

The Northern and, respectively, Southern Lights emerge when energetic particles from sun flares slam into our planet’s magnetosphere, which lead to protons being injected into the magnetic field. These get funneled towards the poles, and that’s how the light show gets eventually staged. For a more vivid and detailed explanation on how aurora borealis are formed check out the previous video-post I’ve written.

On a close proximity to a sun exoplanet subjected to a coronal mass ejection (CME), things would be a lot different though. Besides the huge energy levels compared to those on Earth’s aurorae, an exoplanet would get rapidly engulfed, resulting an eruption that will light up equatorial regions, rippling from the north to south poles over six hours, eventually fading as the geomagnetic storm energy is dissipated.

“The impact to the exoplanet would be completely different than what we see in our solar system, and much more violent,” says co-author Vinay Kashyap of CfA.

Check out this animation of a stunning aurorae ripple around a “hot Jupiter” below.

CfA press release

share Share

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Giant solar panels in space could deliver power to Earth around the clock by 2050

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

Bright, polarized, and unseen in any other light — Punctum challenges astrophysical norms.