homehome Home chatchat Notifications


Astronomers use gravity to zoom in on incredibly distant star

A new take on the whole 'twinkle twinkle' thing.

Mihai Andrei
April 2, 2018 @ 6:34 pm

share Share

Scientists have used a “cosmic magnifying glass” to image two twinkling stars, billions of light years away, magnifying them over 2,000 times, revealing a lot about the surrounding dark matter in the process.

Image of Icarus (MACS J1149+2223 Lensed Star 1)
Credit: NASA, ESA, and P. Kelly (University of Minnesota).

When you’re studying stars millions and billions of light years away, you need all the help you can get — thankfully, the universe sometimes lends an unexpected hand. This unexpected hand comes in the form of gravity.

In the simplest of terms, astronomers can use clusters of massive galaxies as a lens, to zoom in on some areas of space.  According to general relativity, light follows the curvature of spacetime. Consequently, when light passes around a massive object, it bends. This means that the light from an object on the other side will bend towards an observer’s eye, just like with an ordinary lens. But unlike an optical lens, a gravitational lens has no single focal point, but a focal line.

If it all sounds complex, well, it is — but it’s already a rather common technique in astronomy.

Gravitational lensing can happen on all scales, but it’s especially effective at extremely large scales. Everything bends light (even our own bodies, by an incredibly small amount), but the gravitational field galaxies and clusters of galaxies can lens light enough by observable amounts. In two recent studies, two teams of authors repeatedly observed parts of the sky that contain massive clusters of galaxies, using the Hubble telescope.

In the two studies, researchers report ‘twinkling’ stars. There are several reasons why stars twinkle — which actually means they change brightness abruptly. For instance, they can undergo explosive events (such as a supernova eruption) — and in one case, this was actually the case. But in the other case, the twinkle wasn’t from the star itself — it was due to the relative motion between the lensed star and the lensing cluster, which made the light seem to turn brighter and then dimmer.

By studying these twinkles, researchers can not only infer the physical properties of the star themselves — but also study the distribution of dark matter around them. Dark matter is a type of matter that may constitute about 80% of the total matter in the universe, but we don’t really know that much about it because we can’t study it directly — so far, we’ve only noticed its gravitational effects.

Journal Reference:

  • Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens. DOI: 10.1038/s41550-018-0430-3
  • Two peculiar fast transients in a strongly lensed host galaxy. DOI: 10.1038_s41550-018-0405-4

share Share

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

These findings challenge what we thought we knew about life in the deep sea.

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren't They In Your Phones and Cars Yet?

Solid state are miles ahead lithium-ion, but several breakthroughs are still needed before mass adoption.

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

Is Roman concrete more sustainable? It's complicated.