homehome Home chatchat Notifications


The DART planetary defense mission reshaped the Dimorphos asteroid

In the process of proving we could deflect asteroids we also learned quite a bit about them.

Mihai Andrei
February 26, 2024 @ 9:14 pm

share Share

Dimorphos
Dimorphos turned out to be a “rubble pile”. This high-resolution view of Dimorphos was created by combining the final 10 full-frame images obtained by DART’s Didymos Reconnaissance and Asteroid Camera for Optical navigation. Image credits: NASA.

Dimorphos, a potato-shaped moonlet orbiting the larger asteroid Didymos, was virtually unknown to most people until recently. But on September 26th, 2022, it became the stage for a historic event: the first deliberate planetary defense mission, NASA’s Double Asteroid Redirection Test (DART).

DART was a daring initiative to assess humanity’s ability to prevent a catastrophic asteroid collision. The idea was to target Dimorphos and change its moonlet’s orbit through a direct kinetic impact. The successful mission marked a historic moment. It demonstrated for the first time that human ingenuity could indeed modify the path of celestial objects.

But this was just one aspect of the mission. DART is not just about testing our ability to deflect potentially Earth-threatening asteroids. It’s also about exploring asteroids and the birth of our solar system.

Dimorphos is weak

The DART mission deflected the moonlet Dimorphos by directly colliding with it at high speed. This impact altered Dimorphos’s momentum, resulting in a change to its orbital path around its parent asteroid, Didymos.

As a result, NASA researchers were expecting DART to create a sizable crater. But the mission reshaped Dimorphos’s surface in unforeseen ways. The collision generated an ejecta curtain, propelling debris into space and altering the asteroid’s surface topography. This phenomenon provided critical data on the asteroid’s structural integrity and the dynamics of ejecta in microgravity environments, offering new perspectives on asteroid material composition and behavior.

Sabina Raducan and her team used advanced shock physics simulations, guided by initial DART mission findings, to study the impact on Dimorphos. Their models, which closely matched the actual impact observations, indicate that Dimorphos is a weak asteroid, with surface characteristics similar to other asteroids.

The simulations suggest Dimorphos is a “rubble-pile” asteroid, a type characterized by a loose collection of rocks bound by weak gravitational forces. Surprisingly, the mission uncovered that Dimorphos’s cohesive strength was much lower than anticipated, and its bulk density was comparable to other well-studied asteroids like Ryugu and Bennu. These findings suggest that despite their varied appearances and orbits, these space rocks share common origins or formation processes.

Dimorphos images from Arecibo Observatory
Radar images from the Arecibo Observatory from 2003. This was our best view of Dimorphos then. Image via Wikimedia Commons.

The findings, once more, are important on two fronts. Firstly, they suggest that many asteroids may have formed in the same way and may be structurally weak.

This paves the way for more effective defensive mechanisms against potential asteroid threats — which may just prove to be useful in the future. Enriching our understanding of our solar system is, at the same time, making us a bit safer in the solar system.

The study was published in Nature Astronomy.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes