homehome Home chatchat Notifications


Samsung wants to “copy/paste” your brain into a 3D chip

It sounds intriguing, but it's easier said than done.

Fermin Koop
September 28, 2021 @ 12:11 pm

share Share

The tech company is proposing a way to copy a brain’s neuron wiring map into a 3D neuromorphic chip. The approach, detailed in a new paper, relies on a nanoelectron array developed by a group of researchers that enters a big volume of neurons to record where the connections are made and the strength of those connections. Researchers believe that with this approach, they will one day be able to download people’s brains onto 3D chips.

Image credit: Samsung.

Neuro-morphism is a term we may want to become familiar with. It refers to something that takes the form of the brain. If you want to build something that follows the shape of the brain, you also have to understand the mechanisms of the brain — from why it remembers information to how many neurons are activated before a decision is made. A neuromorphic device could work in a way that’s mechanically analogous to our understanding of some part of the brain.

From Google to Microsoft, many organizations are working to develop neuromorphic chips. Researchers at MIT even discovered (last year) how to put thousands of artificial brain synapses on a very small chip. Even billionaire Elon Musk recently took some big steps with his Neuralink tech company as it builds a device to embed on a person’s brain. 

Working with engineers from Harvard University, Samsung presented an approach to create a memory chip that approaches the computing features of the brain that have so far been outside the reach of current technology. This includes autonomy, cognition, low power, facile learning, and adaptation to the environment, for example, all developed around a brain-like design.

“The vision we present is highly ambitious,” Donhee Ham, Fellow of Samsung Advanced Institute of Technology (SAIT) and Professor of Harvard University, said in a media statement from Samsung. “But working toward such a heroic goal will push the boundaries of machine intelligence, neuroscience, and semiconductor technology.

Revisiting neuromorphism

The human brain contains roughly 86 billion neurons, and the way they are connected is even more complex. These connections are largely behind the functions of the brain and they’re what make it so special as an organ. For neuromorphic engineering, the goal has always been, at least since the field officially started in the 1980s, to mimic the structure and function of the neuronal network on a silicon chip. 

Nevertheless, this has proven more difficult than expected, as there’s not that much knowledge on how neurons are linked together to create the brain’s higher functions. That’s why the original target of neuromorphic engineering was been recently changed to design a chip “inspired” by the brain instead of trying to mimic it so rigorously. 

However, the researchers at Samsung are now suggesting a way to back to the original goal of neuromorphics. The nanoelectrode the developed would enter a big number of neurons and register their electric signals with a high level of sensitivity. The recordings would then inform where neurons connect with each other and the strength of those connections. 

The neuronal wiring map could be copied based on those recordings and then pasted to memories, either non-volatile ones, such as those commercially available in solid-state drives (SSD), or to recently developed ones, such as resistive random-access ones (RRAM). Each memory would represent the strength of the neural connection in the map.

In their paper, the researchers also suggest a way to paste the neuronal map to a memory network, using specially-engineered non-volatile memories. These can learn and express the neuronal map when driven by intercellularly recorded signals. There’s a challenge, however, as the human brain has 100 billion neurons, and a thousand times more synaptic connections.

This means the chip will require about 100 trillion or so memories, a difficult challenge for Samsung. While the researchers are optimistic that they could use a 3D integration of memories to address this issue, it will probably take quite a bit of time for Samsung or any other company working on neurophormism to further implement the technology. 

The study behind the technology was published in the journal Nature. 

share Share

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

MIT experiment shows even minimal disturbance erases light’s wave pattern, proving Einstein wrong

Ohio Couple Welcomes World's “Oldest Baby” From 30-Year-Old Frozen Embryo

A record-breaking birth brings new questions about the limits of life in cold storage

The Longest Lightning Flash Ever Recorded Stretched 829 Kilometers From Texas to Missouri

A single flash stretched from Texas to Missouri.

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.