homehome Home chatchat Notifications


Coldest atom cloud in the world chills other matter close to absolute zero

For the first time, researchers at the University of Basel used an ultracool atomic gas to cool a very thin membrane to less than one degree Kelvin. The new technique might enable novel investigations of quantum mechanics phenomena and precision measuring devices. Coldest matter in the world lends its freeze In the ultracold world, produced […]

Dragos Mitrica
November 24, 2014 @ 6:03 pm

share Share

For the first time, researchers at the University of Basel used an ultracool atomic gas to cool a very thin membrane to less than one degree Kelvin. The new technique might enable novel investigations of quantum mechanics phenomena and precision measuring devices.

Coldest matter in the world lends its freeze

A cloud of ultracold atoms (red) is used to cool the mechanical vibrations of a millimeter-sized membrane (brown, in black frame). The mechanical interaction between atoms and membrane is generated by a laser beam and an optical resonator (blue mirror). Credit: Tobias Kampschulte, University of Basel

A cloud of ultracold atoms (red) is used to cool the mechanical vibrations of a millimeter-sized membrane (brown, in black frame). The mechanical interaction between atoms and membrane is generated by a laser beam and an optical resonator (blue mirror). Credit: Tobias Kampschulte, University of Basel

In the ultracold world, produced by methods of laser cooling and trapping, atoms move at a snail’s pace and behave like matter waves. Typically, lasers are used to trap atoms inside a vacuum chamber, almost grounding all atomic vibrations to a halt and thus lower temperature close to less than 1 millionth of a degree above absolute zero. In this state, atoms behave differently – governed by laws of spooky quantum mechanics – and move in small wave packets. This means superposition or being in several places at once.

Ultracooled atoms are usually used in so called atomic clocks that only lose a second every couple hundred millions of years. These are very useful for syncing GPS satellites, for instance, but can ultracool atoms be used to refrigerate some other matter? It’s a very interesting idea, but only if one can surpass the challenges. Even the largest ultracool atom clouds, which can number billions of particles, aren’t larger than a grain of sand. Because the surface area is so small, it’s very difficult to transfer heat and cool objects.

There are workarounds, however. Swiss researchers successfully cooled the vibrations of a millimeter-sized membrane using ultracool atoms. The membrane, a silicon nitride film of 50 nm thickness, oscillates up and down like a small square drumhead. Such mechanical oscillators are never fully at rest but show thermal vibrations that depend on their temperature. Although the membrane contains about a billion times more particles than the atomic cloud, a strong cooling effect was observed, which cooled the membrane vibrations to less than 1 degree above absolute zero, as reported in Nature Nanotechnology.

“The trick here is to concentrate the entire cooling power of the atoms on the desired vibrational mode of the membrane,” explains Dr. Andreas Jöckel, a member of the project team.

A laser light was shone which changed the vibration of the membrane and transmitted the cooling effect over a distance of several meters. The effect was amplified by an optical resonator made of two mirrors, with the membrane sandwiched in between. Previously, systems that use light to couple ultracold atoms and mechanical oscillator had been proposed theoretically, but this is the first time it’s been demonstrated experimentally.

The take away is that such a system might be employed to experience quantum mechanical system in macrosized objects – the kind that you can see with the naked eye.

It may also be possible to generate what are known as entangled states between atoms and membrane. A membrane’s vibrations could be measured with unprecedented detail, and along with the improvement would follow a new class of highly sensitive sensors for small forces and masses.

“The well-controlled quantum nature of the atoms combined with the light-induced interaction is opening up new possibilities for quantum control of the membrane,” says Treutlein.

 

 

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.