homehome Home chatchat Notifications


Nuclear clocks set to become most accurate timekeepers on Earth. Only a fraction of a second lost for 14 billion years

Atomic clocks are the current most accurate time and frequency standards, capable of operating with an uncertity of only a second in millions of years. A new research currently in the work by scientist from the University of New South Wales seeks to track time with an unprecedented accuracy of a mere 20th a second in […]

Tibi Puiu
March 9, 2012 @ 5:26 pm

share Share

Nuclear clocks will keep track of time at an unprecedented level of accuracy. The white rabbit from Alice in Wonderland would have most likely been interested in this research.

Nuclear clocks will keep track of time at an unprecedented level of accuracy. The white rabbit from Alice in Wonderland would have most likely been interested in this research.

Atomic clocks are the current most accurate time and frequency standards, capable of operating with an uncertity of only a second in millions of years. A new research currently in the work by scientist from the University of New South Wales seeks to track time with an unprecedented accuracy of a mere 20th a second in 14 billion years, 100 times more accurate than an atomic clock.

Atomic clocks work by tracking the orbit of electrons, essentially using them as a sort of pendulum. The researchers suggest they can reach a  hundredfold increase in accuracy by employing an alternate solution. They propose using lasers to orient the electrons in an atom in such a manner that the clock could actually track neutrons orbiting around the atom’s nucleus. The proposed single-ion clock, or nuclear clock, would thus be accurate to 19 decimal places or by a twentieth of a second over 14 billion years, roughly the age of the Universe.

Electrons are subjected to slight external interference, which cause a meager, yet important,  inaccuracy in atomic clocks. Neutrons orbit extremely close to the nucleus, which makes them almost immune to interference. Currently, atomic clocks are the world’s timekeeping standard, and are widely used in a range of applications, from GPS navigation systems, to high-bandwidth data transfer, to govermental timing synchronization, to system synchronization in particle accelerators, where even a nanosecond error needs to be cleared.

“This is nearly 100 times more accurate than the best atomic clocks we have now,” says professor Victor Flambaum of the University of New South Wales.

It would allow scientists to test fundamental physical theories at unprecedented levels of precision and provide an unmatched tool for applied physics research.

No word has been given so far concerning when the researchers will actually build the first nuclear clock, however their findings are expected to be published in an upcoming paper in the journal It’s not clear just yet if or when the researchers plan to construct such a clock, but their findings are set to be published in the industry journal Physical Review Letters

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We've Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

The ancient event, over 500 times stronger than any modern storm, would be devastating were it to happen today.

This is absolutely the best way to crack an egg, according to science

The side of the egg is, surprisingly, more resilient. It acts like a shock absorber.