homehome Home chatchat Notifications


New material allows ultra-thin, transparent solar cells

Austrlian researchers have successfully developed transparent, ultra-thin, foldable solar cells.

Mihai Andrei
August 5, 2014 @ 11:35 am

share Share

Image courtesy of Vienna University of Technology, TU Vienna

Extremely thin, semi-transparent and flexible solar cells are one step closer to becoming a reality. Scientists have managed to create a semiconductor structure consisting of two ultra-thin layers which is excellent for solar panels. The solar cells are also transparent, so they could be used as windows or glass fronts.

Several months ago, the team created the first layer, an ultra-thin layer of the photoactive crystal tungsten diselenide. Now, they have successfully combined it with another layer made of molybdenum disulphide, creating a system that could be used in the future generation of solar cells.

Ultra-thin materials, having only several atoms in thickness are a hot topic in science. The most notable example is graphene, the wonder material consisting of only 1 atom of thickness arranged in a lattice. We’ve already written how graphene could make the internet 100 times faster, how it can make incredibly resistant yarn which could revolutionize the textile industry, how it can give us predator vision, develop new transistors, repair itself naturally, and many more. But the good thing about graphene studies is that they didn’t just show us what graphene can do – it also showed us what other extremely thin materials can do. At the Vienna University of Technology, Thomas Mueller, Marco Furchi and Andreas Pospischil have put that knowledge to good use:

“Quite often, two-dimensional crystals have electronic properties that are completely different from those of thicker layers of the same material,” says Thomas Mueller. His team was the first to combine two different ultra-thin semiconductor layers and study their optoelectronic properties.

Tungsten diselenide was known to be able to transform solar energy into electricity and vice versa. It had a significant problem though – a solar cell made from it would require a huge number of tiny electrodes to properly function. For this reason, it was discarded from studies for a while. However, researchers found an elegant way around that using another layer of molybdenium disulphide, which also consists of three atomic layers. The exact mechanism through which it does this is rather complicated.

When light shines upon an object, photons displace electrons from their original position. Without the electron, which is negatively charged, a positively charged hole remains in place. Both the electron and the hole can move freely in the material, but here’s the thing – they only contribute with energy when they are kept apart, so they cannot recombine. In order to prevent recombination of electrons and holes, metallic electrodes can be used to suck the charge away.

The holes move inside the tungsten diselenide layer, the electrons, on the other hand, migrate into the molybednium disulphide,” says Thomas Mueller. Thus, recombination is suppressed.

Of course, this only works if the energy is tuned just right in both layers – but this can be ensured through electrostatic fields. Florian Libisch and Professor Joachim Burgdörfer (TU Vienna) used computer models to predict what energies changes are in both layers and what voltage leads to optimum energy yields.

“One of the greatest challenges was to stack the two materials, creating an atomically flat structure,” says Thomas Mueller. “If there are any molecules between the two layers, so that there is no direct contact, the solar cell will not work.”

Another advantage of this technology is that while part of the light is absorbed and creates energy, most of it passes right through, so these solar cells could be used as glass fronts.

Scientific Reference:

  1. Marco M. Furchi, Andreas Pospischil, Florian Libisch, Joachim Burgdörfer, Thomas Mueller. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Letters, 2014; 140728125936002 DOI: 10.1021/nl501962c

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.