homehome Home chatchat Notifications


Graphene Technology Could Give Us Predator Vision Contact Lenses

As a kid, looking at the Predator movies gave me goosebumps; it wasn’t the physical superiority of the Predator, but the technological advantages. I mean, he has all that shooting stuff, and teleportation and camouflage, and the vision… it was all too much! But the way science is crazily developing, we’re already starting to experiment […]

Mihai Andrei
March 17, 2014 @ 2:00 pm

share Share

As a kid, looking at the Predator movies gave me goosebumps; it wasn’t the physical superiority of the Predator, but the technological advantages. I mean, he has all that shooting stuff, and teleportation and camouflage, and the vision… it was all too much! But the way science is crazily developing, we’re already starting to experiment with all that… and I’m still in my youth ! Don’t even get me starting on the projectiles the army is experimenting with these days, and scientists have already proven different concepts of invisibility cloaks (ie here and here), researchers are working on teleportation and they’ve already successfully teleported photons, and now, thanks to graphene, guess what – we might get predator vision lenses as well.

Researchers at the University of Michigan have developed the first room-temperature light detector that can see the entire infrared spectrum of colors; and because graphene is so incredibly thin (just one atom thick), the entire device can be mounted on a smartphone, or perhaps even a contact lens.

“We can make the entire design super-thin,” said Zhaohui Zhong, assistant professor of electrical engineering and computer science told ZME Science. “It can be stacked on a contact lens or integrated with a cell phone.”

It’s all about detecting the infrared light. Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, starting from wavelengths just longer than those of visible red light and stretching up to a millimeter long. Infrared vision has a lot of uses, from spotting people and animals in the dark and heat leaks in houses to monitoring blood flow and identifying some chemicals in the environment. More recently, it’s also been used in more artistic purposes, as scientists investigated the sketches behind some Gauguin paintings.

The visible spectrum can be captured with a relatively simple chip, but infrared vision requires a combination of technologies to see near-, mid- and far-infrared radiation all at once. To make things more interesting, the mid-infrared and far-infrared sensors typically need to be at very cold temperatures.

However, graphene has the capacity to detect the entire infrared spectrum – as a matter of fact, it can also detect both the visible and ultraviolet light. But until now, it hasn’t been viable for infrared detection because it can’t capture enough light to generate a detectable electrical signal. In other words, the fact that it’s so incredibly slim is both its blessing and its curse, only allowing it to capture 2.3 percent of the light that hits it. If the light that hits the graphene layer isn’t enough to generate an electric signal, then it simply can’t be used as a sensor. The researchers explain:

“The challenge for the current generation of graphene-based detectors is that their sensitivity is typically very poor,” Zhong said. “It’s a hundred to a thousand times lower than what a commercial device would require.”

In order to work this problem out, they had to think a little outside the box. Zhong and Ted Norris, the Gerard A. Mourou Professor of Electrical Engineering and Computer Science, worked with graduate students to design a new way of generating the electrical signal.

They put an insulating barrier layer between two graphene sheets. Here’s how it works (it’s a little hard to understand, but I’ll try to keep it as simple as possible): the bottom layer has a current running through it. When light hits the other layer (the top one), it frees electrons, creating positively charged holes. Then, the electrons used a quantum mechanical trick to slip through the barrier and into the bottom layer of graphene. Meanwhile, the positively charged holes, left behind in the top layer, produced an electric field that affected the flow of electricity through the bottom layer. This new approach allows a room-temperature sensor to work just as fine as the cooled mid-infrared detectors. It is also very small, which makes it even more useful.

“If we integrate it with a contact lens or other wearable electronics, it expands your vision,” Zhong said. “It provides you another way of interacting with your environment.”

Scientific Information: Graphene photodetectors with ultra-broadband and high responsivity at room temperature, Nature Nanotechnology, 2014, DOI: 10.1038/nnano.2014.31

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes