homehome Home chatchat Notifications


Watching Nanoscale Fluids Flow

Nanofluids, fluids containing nanometer-sized particles, show immense potential for future engineering. Even water flowing through nanotubes flows much faster than traditional mechanics says it should be possible. Now, researchers have found a way to directly image nanofluids. Researchers at Caltech have applied a new imaging technique called four-dimensional (4D) electron microscopy to the nanofluid dynamics problem. The technique […]

Henry Conrad
June 27, 2014 @ 11:21 am

share Share

Nanoscale nanofluids flowing.

Nanofluids, fluids containing nanometer-sized particles, show immense potential for future engineering. Even water flowing through nanotubes flows much faster than traditional mechanics says it should be possible. Now, researchers have found a way to directly image nanofluids.

Researchers at Caltech have applied a new imaging technique called four-dimensional (4D) electron microscopy to the nanofluid dynamics problem. The technique was invented at Caltech, and basically involves a stream of ultra-fast-moving electrons bombarding a sample in a carefully timed manner. Each electron scatters off a sample, providing a still image that lasts about a millionth of a billionth of a second. They are able to make millions and millions of these scatters, and stitch together the images – creating the result you see below.

Ahmed Zewail, the Linus Pauling Professor of Chemistry and professor of physics, and Ulrich Lorenz, a postdoctoral scholar in chemistry, the authors of the paper, used single laser pulses to melt the lead cores of individual zinc oxide nanotubes. Then, they observed how the hot pressurized liquid moved within the tubes.

“These observations are particularly significant because visualizing the behavior of fluids at the nanoscale is essential to our understanding of how materials and biological channels effectively transport liquids,” says Zewail. In 1999, Zewail won the Nobel Prize for his development of femtosecond chemistry.

Scientific Reference: Lorenz, Ulrich J. and Zewail, Ahmed H. (2014) Observing liquid flow in nanotubes by 4D electron microscopy. Science, 344 (6191). pp. 1496-1500. ISSN 0036-8075.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.