homehome Home chatchat Notifications


Researchers create a new material from 1 billion tiny magnets which mimics ice, water and steam

Scientists working at the Paul Scherrer Institute (PSI) have created a very specific type of material from over 1 billion magnets placed in a specific configuration. Astonishingly, its magnetic properties now change with temperature, just like water can be liquid, solid and gaseous based on temperature.

Mihai Andrei
September 23, 2015 @ 11:16 am

share Share

Scientists working at the Paul Scherrer Institute (PSI) have created a very specific type of material from over 1 billion magnets placed in a specific configuration. Astonishingly, its magnetic properties now change with temperature, just like water can be liquid, solid and gaseous based on temperature.

Image credits: Heyderman et al.

This material was constructed to confirm or infirm some previous theories; some researchers suspected that the material may behave this way, but until now, it was just a theory. They used over 1 billion nanomagnets, and placed them in very precise positions in a hexagonal lattice. The magnets are only 63 nanometers long, and are shaped roughly like a rice grain; the total area covered by them was about 5 millimeters. The advantage here is that while individual atoms can’t really be placed with such accuracy, magnets can.

Then, they started testing on the magnetic material; they found that while heated, the magnets maintained a more or less random direction. But as they cooled off, they began to lock in particular positions. Specifically, they noted three phase transitions – just like with water.

Laura Heyderman from PSI said:

“We were surprised and excited,” explains Heyderman. “Only complex systems are able to display phase transitions.”

This has major implications for engineering future materials – it enables the creation of new states of matter, or even better – developing a specific state of matter that changes its properties based on specific needs.

“The beauty of it all: tailored phase transitions could enable metamaterials to be adapted specifically for different needs in future,” explains Heyderman.

Specific applications could be in information transfer or sensors that measure changes in magnetic properties.

Journal reference: L. Anghinolfi, H. Luetkens, J. Perron, M. G. Flokstra, O. Sendetskyi, A. Suter, T. Prokscha, P. M. Derlet, S. L. Lee & L. J. Heyderman. Thermodynamic phase transitions in a frustrated magnetic metamaterial. doi:10.1038/ncomms9278

share Share

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.