homehome Home chatchat Notifications


Understanding magma in the mantle: rocks melt at greater depth than previously thought

Magma forms much deeper than geologists previously believed, according to a new study conducted by Rice University. Magma and Crust   The group led by geologist Rajdeep Dasgupta put very small samples of peridotite under very large pressures, to find out if the rock can liquify, at least in small amounts, as deep as 250 […]

Mihai Andrei
January 10, 2013 @ 8:28 am

share Share

Magma forms much deeper than geologists previously believed, according to a new study conducted by Rice University.

Magma and Crust

 

mantle

The group led by geologist Rajdeep Dasgupta put very small samples of peridotite under very large pressures, to find out if the rock can liquify, at least in small amounts, as deep as 250 km beneath the ocean floor. Peridotite is the dominant rock of the Earth’s mantle above a depth of about 400 km, and it was previously believed that the mineral doesn’t liquify above that depth.

mantle structure

The Rice team focused on mantle beneath oceans because that is where the crust is typically formed; in a much-simplified version, the silicate melts (magma) rise with the convective currents, cool as they reach the crust and then solidify to create new crust. The starting point for melting has long been thought to be at 70 kilometres beneath the seafloor.

 

Geophysics

 

In order to determine the mantle’s density and properties, geophysicists used seismic information; seismic waves from earthquakes travel the globe much like sound waves, and by measuring their speed, we can estimate some the medium’s properties. These waves travel faster in solids (especially in denser solids), and slower in liquids; the first questions arose here.

Seismologists have observed anomalies in their velocity data as deep as 200 kilometers beneath the ocean floor,” Dasgupta said. “Based on our work, we show that trace amounts of magma are generated at this depth, which would potentially explain that.”

seismic wave

So it didn’t really add up – and this wasn’t the only clue. Geophysicists have also struggled to explain the bulk electrical conductivity of the oceanic mantle – something which was observed but couldn’t really be figured out.

“The magma at such depths has a high enough amount of dissolved carbon dioxide that its conductivity is very high,” Dasgupta said. “As a consequence, we can explain the conductivity of the mantle, which we knew was very high but always struggled to explain.”

The thing is, we cannot really dig down to the mantle – this is miles away from happening, both figuratively and literally, so we have to rely on indirect measurements (seismology, electric measurements, etc), lab experiments and surface extrapolations. Another interesting they found in this experiment was that carbonated rocks melt at significantly lower temperatures than non-carbonated.

“This deep melting makes the silicate differentiation of the planet much more efficient than previously thought,” Dasgupta said. “Not only that, this deep magma is the main agent to bring all the key ingredients for life — water and carbon — to the surface of the Earth.”

Volcanic windows

However, Dasgupta believes that volcanic rocks are the key to understanding our planet’s mantle.

“Our field of research is called experimental petrology,” he said. “We have all the necessary tools to simulate very high pressures (up to nearly 750,000 pounds per square inch for these experiments) and temperatures. We can subject small amounts of rock samples to these conditions and see what happens.”

A surfaced volcanic rock - peridotite

A surfaced volcanic rock – peridotite

To subject the rocks to these hellish conditions, they use massive hydraulic presses.

“When rocks come from deep in the mantle to shallower depths, they cross a certain boundary called the solidus, where rocks begin to undergo partial melting and produce magmas,” Dasgupta said. “Scientists knew the effect of a trace amount of carbon dioxide or water would be to lower this boundary, but our new estimation made it 150-180 kilometers deeper from the known depth of 70 kilometers,” he said.

These findings have major implications for all planetary sciences:

“What we are now saying is that with just a trace of carbon dioxide in the mantle, melting can begin as deep as around 200 kilometers. And when we incorporate the effect of trace water, the magma generation depth becomes at least 250 kilometers. This does not generate a large amount, but we show the extent of magma generation is larger than previously thought and, as a consequence, it has the capacity to affect geophysical and geochemical properties of the planet as a whole.”

The paper will be published this week in Nature

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

One of Earth’s rarest gems finally reveals its secrets at the Smithsonian.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

Millions of years ago, the Atlantic Ocean split these continents but not before dinosaurs walked across them.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Scientists Tracked a Mysterious 200-Year-Old Global Cooling Event to a Chain of Four Volcanoes

A newly identified eruption rewrites the volcanic history of the 19th century.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.