homehome Home chatchat Notifications


Understanding magma in the mantle: rocks melt at greater depth than previously thought

Magma forms much deeper than geologists previously believed, according to a new study conducted by Rice University. Magma and Crust   The group led by geologist Rajdeep Dasgupta put very small samples of peridotite under very large pressures, to find out if the rock can liquify, at least in small amounts, as deep as 250 […]

Mihai Andrei
January 10, 2013 @ 8:28 am

share Share

Magma forms much deeper than geologists previously believed, according to a new study conducted by Rice University.

Magma and Crust

 

mantle

The group led by geologist Rajdeep Dasgupta put very small samples of peridotite under very large pressures, to find out if the rock can liquify, at least in small amounts, as deep as 250 km beneath the ocean floor. Peridotite is the dominant rock of the Earth’s mantle above a depth of about 400 km, and it was previously believed that the mineral doesn’t liquify above that depth.

mantle structure

The Rice team focused on mantle beneath oceans because that is where the crust is typically formed; in a much-simplified version, the silicate melts (magma) rise with the convective currents, cool as they reach the crust and then solidify to create new crust. The starting point for melting has long been thought to be at 70 kilometres beneath the seafloor.

 

Geophysics

 

In order to determine the mantle’s density and properties, geophysicists used seismic information; seismic waves from earthquakes travel the globe much like sound waves, and by measuring their speed, we can estimate some the medium’s properties. These waves travel faster in solids (especially in denser solids), and slower in liquids; the first questions arose here.

Seismologists have observed anomalies in their velocity data as deep as 200 kilometers beneath the ocean floor,” Dasgupta said. “Based on our work, we show that trace amounts of magma are generated at this depth, which would potentially explain that.”

seismic wave

So it didn’t really add up – and this wasn’t the only clue. Geophysicists have also struggled to explain the bulk electrical conductivity of the oceanic mantle – something which was observed but couldn’t really be figured out.

“The magma at such depths has a high enough amount of dissolved carbon dioxide that its conductivity is very high,” Dasgupta said. “As a consequence, we can explain the conductivity of the mantle, which we knew was very high but always struggled to explain.”

The thing is, we cannot really dig down to the mantle – this is miles away from happening, both figuratively and literally, so we have to rely on indirect measurements (seismology, electric measurements, etc), lab experiments and surface extrapolations. Another interesting they found in this experiment was that carbonated rocks melt at significantly lower temperatures than non-carbonated.

“This deep melting makes the silicate differentiation of the planet much more efficient than previously thought,” Dasgupta said. “Not only that, this deep magma is the main agent to bring all the key ingredients for life — water and carbon — to the surface of the Earth.”

Volcanic windows

However, Dasgupta believes that volcanic rocks are the key to understanding our planet’s mantle.

“Our field of research is called experimental petrology,” he said. “We have all the necessary tools to simulate very high pressures (up to nearly 750,000 pounds per square inch for these experiments) and temperatures. We can subject small amounts of rock samples to these conditions and see what happens.”

A surfaced volcanic rock - peridotite

A surfaced volcanic rock – peridotite

To subject the rocks to these hellish conditions, they use massive hydraulic presses.

“When rocks come from deep in the mantle to shallower depths, they cross a certain boundary called the solidus, where rocks begin to undergo partial melting and produce magmas,” Dasgupta said. “Scientists knew the effect of a trace amount of carbon dioxide or water would be to lower this boundary, but our new estimation made it 150-180 kilometers deeper from the known depth of 70 kilometers,” he said.

These findings have major implications for all planetary sciences:

“What we are now saying is that with just a trace of carbon dioxide in the mantle, melting can begin as deep as around 200 kilometers. And when we incorporate the effect of trace water, the magma generation depth becomes at least 250 kilometers. This does not generate a large amount, but we show the extent of magma generation is larger than previously thought and, as a consequence, it has the capacity to affect geophysical and geochemical properties of the planet as a whole.”

The paper will be published this week in Nature

share Share

Meet the world's rarest mineral. It was found only once

A single gemstone from Myanmar holds the title of Earth's rarest mineral.

A massive 8.8 earthquake just struck off Russia's coast and it is one of the strongest ever recorded

The earthquake in Kamchatka is the largest worldwide since 2011. Its location has been very seismically active in recent months.

After 100 years, physicists still don't agree what quantum physics actually means

Does God play dice with the universe? Well, depends who you ask.

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

A new fossil suggests dinosaurs may have sung before birds ever took flight

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

Antimatter was held in a qubit state for nearly a minute.

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

No laws of physics were harmed in this process.

This Startup Claims It Can Turn Mercury Into Gold Using Fusion Energy and Scientists Are Intrigued

The age-old alchemist's dream may find new life in the heart of a fusion reactor.

Humans Built So Many Dams, We’ve Shifted the Planet’s Poles

Massive reservoirs have nudged Earth’s axis by over a meter since 1835.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.

Mesmerizing Fluid “Fireworks” Reveal Clues for Trapping Carbon Underground

Simulations show stunning patterns that could shape future carbon capture strategies.