homehome Home chatchat Notifications


Long 'fingers' of heat found beneath Earth's surface

Geophysicists trying to understand hotspot volcanoes have used a process known as seismic tomography and detected previously unknown finger-like structures of heat, some thousands of km long. The vast majority of volcanoes arises at contact zones between tectonic plates. However, another, entirely different type of volcano exists: hotspots are volcanic regions which can appear even […]

Mihai Andrei
September 10, 2013 @ 5:33 am

share Share

Geophysicists trying to understand hotspot volcanoes have used a process known as seismic tomography and detected previously unknown finger-like structures of heat, some thousands of km long.

Long fingers of heat interact with hotspot volcanoes and tectonic plates.

Credit: Illustration: Scott French

The vast majority of volcanoes arises at contact zones between tectonic plates. However, another, entirely different type of volcano exists: hotspots are volcanic regions which can appear even in the middle of tectonic plates. It is believed that they are ‘fed’ by underlying mantle that is anomalously hot compared with the mantle elsewhere and rises due to this temperature difference (just like hot air rises above cold air).

But some hotspot volcanoes cannot be explained by this process – something which suggests significantly more complex interactios between these hot plumes and the upper mantle. It is even believed that this type of volcanoes, if understood, could provide models of interaction for the entire mantle. This is why University of Maryland seismologist Vedran Lekic and colleagues at the University of California Berkeley developed a new computer modelling approach to this phenomena.

Yellowstone is a fine example of a hotspot volcano.

Yellowstone is a fine example of a hotspot volcano.

Earthquakes and seismic waves

Everytime there is an earthquake (or significant volcanic eruption, or even a big explosion), seismic waves are emitted. They are a type of acoustic wave and are constantly monitored by a global network of seismographs; this is how they monitor any nuclear events as well. As seismic waves pass through different layers from the source (earthquake) to the seismograph, they change their speed and shape depending on the parameters of the environment they are in. By comparing the waveforms from hundreds of earthquakes recorded at locations around the world, seismologists can make deduction about the structures through which the seismic waves have traveled.

Types of seismic waves.

Types of seismic waves.

This process is commonly known as seismic tomography, and as the name says, it works basically on the same principle as CT scans (computed tomography). But the problem is that we know so much less about the inside of the Earth than we do about the human body, so interpreting the data from seismic tomography is a titanic job.

“The Earth’s crust varies a lot, and being able to represent that variation is difficult, much less the structure deeper below” said Lekic, an assistant professor of geology at the College Park campus.

This process involves dreadfully complicated mathematics and a process of trial and error – until recently, it would have taken almost 20 years to conduct the necessary calculations for a study like this. But UC Berkeley Prof. Barbara Romanowicz developed a method to more accurately model waveform, while also drastically reducing computing time.

Hot Results

Using this method for interpreting the data, geophysicists reached the conclusion that long fingers of heat lie in the upper mantle (seismic waves move slower in hotter media).

“We estimate that the slowdown we’re seeing could represent a temperature increase of up to 200 degrees Celsius,” or about 390 degrees Fahrenheit, said French, the study’s study lead author. At these depths, absolute temperatures in the mantle are about 1,300 degrees Celsius, or 2,400 degrees Fahrenheit, the researchers said.

Their findings fit perfectly with previous geophysical predictions. But the new images reveal for the first time the extent, depth and shape of these channels. They also showed something rather unexpected: these ‘fingers’ are interacting with tectonic plate movement, and almost certainly affect the plumes rising up to form hotspots.

“This global pattern of finger-like structures that we’re seeing, which has not been documented before, appears to reflect interactions between the upwelling plumes and the motion of the overlying plates,” Lekic said. “The deflection of the plumes into these finger-like channels represents an intermediate scale of convection in the mantle, between the large-scale circulation that drives plate motions and the smaller scale plumes, which we are now starting to image.”

Journal Reference: Scott French, Vedran Lekic, Barbara Romanowicz. Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere. Science, 2013 DOI: 10.1126/science.1241514

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

One of Earth’s rarest gems finally reveals its secrets at the Smithsonian.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

Millions of years ago, the Atlantic Ocean split these continents but not before dinosaurs walked across them.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Scientists Tracked a Mysterious 200-Year-Old Global Cooling Event to a Chain of Four Volcanoes

A newly identified eruption rewrites the volcanic history of the 19th century.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.