homehome Home chatchat Notifications


Used cigarette buds could provide energy storage sollution

Scientists have found a way to transform cigarette buds into a material which stores energy cheap and efficiently. The material outperforms both commercial and prototypical materials made from graphene and carbon nanotubes and may be eventually added into computers, smart phones or wind turbines.

Mihai Andrei
August 7, 2014 @ 5:18 am

share Share

A group of South Korean researchers has transformed used cigarette buds into a high-performing energy storing material which could be integrated into computers, handheld devices, electrical vehicles and wind turbines.

Cigarette buds may provide cheap and efficient energy storage.

Interestingly enough, the new material significantly outperformed commercially available carbon, graphene and carbon nanotubes. When you consider the 5.6 trillion used-cigarettes, or 766,571 metric tons that are deposited into the environment worldwide every year, the advantages of such a material become even more evident. Basically, you take a pollution problem and turn it into an advantage.

Co-author of the study Professor Jongheop Yi, from Seoul National University, said:

“Our study has shown that used-cigarette filters can be transformed into a high-performing carbon-based material using a simple one step process, which simultaneously offers a green solution to meeting the energy demands of society. Numerous countries are developing strict regulations to avoid the trillions of toxic and non-biodegradable used-cigarette filters that are disposed of into the environment each year — our method is just one way of achieving this.”

Carbon is the most used element in supercapacitors, due to its relatively low cost, high surface area, high electrical conductivity and long term stability. Now, scientists are focused on improving the capacities of carbon supercapacitors, while also reducing production costs. In this study, they have shown that cellulose acetate fibres (the main component in cigarette filters) could be transformed into a carbon-based material using pyrolysis – a simple burning technique. Following the burning process, the resulting material has with many tiny pores which increase performance as a supercapacitive material.

“A high-performing supercapacitor material should have a large surface area, which can be achieved by incorporating a large number of small pores into the material,” continued Professor Yi. A combination of different pore sizes ensures that the material has high power densities, which is an essential property in a supercapacitor for the fast charging and discharging.”

After composing their theory and creating the material, they set out to test iti n a three-electrode system to see how well it stores energy. The results were remarkable – the material stored a higher amount of electrical energy than commercially available carbon and even had a higher amount of storage compared to graphene and carbon nanotubes, as reported in previous studies. So not only did it outperform commercially available products, it also outperformed other prototypes with much fancier materials.

Scientific Reference: Minzae Lee, Gil-Pyo Kim, Hyeon Don Song, Soomin Park, Jongheop Yi. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology, 2014; 25 (34): 345601 DOI: 10.1088/0957-4484/25/34/345601

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.