homehome Home chatchat Notifications


Our brains get a boost when studying new languages, to help us along

It can be used to track our progress.

Alexandru Micu
March 27, 2021 @ 2:34 pm

share Share

Learning a new language boosts brain activity, researchers find. This goes back down to baseline levels as skill improves, allowing us to track the process while it takes place inside the brain.

Our brains are highly tuned to understanding and using language. Not surprisingly, talking with others is a large part of the human experience. When we’re learning a new language, different areas of the brain rev up and collaborate to understand what we’re reading, hearing, and trying to say. A new study finds this process can be tracked as it is taking place in the brain, allowing us to measure our progress — for the first bit, at least.

Big brain time

“In the first few months, you can quantitatively measure language-skill improvement by tracking brain activations,” said Professor Kuniyoshi L. Sakai, a neuroscientist at the University of Tokyo and first author of the paper.

The study worked with 15 participants in their 20s from Europe who had studied English, but had no prior experience with Japanese and had not been to Japan. They moved to Tokyo, and the researchers tracked their progress during introductory Japanese classes (lasting at least three hours each day) taken there.

After at least eight weeks of testing, and six to fourteen weeks later, the participants took multiple-choice reading and listening tests. The authors explain these “passive” skills were favored over “active” ones like writing or speaking as they can be scored more objectively. A magnetic resonance imaging (MRI) scanner was used to record participants’ brain activity during each test. MRIs can track blood flow inside the brain, which is a reliable indicator of neuronal activity.

Four regions of the brain — the grammar center and comprehension area in the left frontal lobe, and the auditory processing and vocabulary areas in the temporo-parietal lobe — are earmarked for language. Areas involved in memory and those handling sight also become active in support of these four. “Even in a native, second, or third language, the same regions are responsible,” Sakai explains.

Significant increases in blood flow were seen for all participants during the first round of tests, suggesting they were still working hard to recognize characters or sounds. Overall, they scored about 45% accuracy on the reading tests and 75% accuracy on the listening tests. Randomly guessing would produce 25% accuracy, the team explains.

During the second test, average reading scores improved to around 55%. Accuracy on the listening tests didn’t change, but the authors note that participants were faster to answer, suggesting they had a better grasp on what they were hearing. A slight increase in activation of the auditory processing area seen during the test suggests a clearer “mind’s voice” while hearing, they add.

However, the authors also saw a decrease in brain activation: in the grammar center and comprehension area during listening tests, and the visual areas during the reading tests.

“Beginners have not mastered the sound patterns of the new language, so cannot hold in memory and imagine them well. They are still expending a lot of energy to recognize the speech in contrast to letters or grammar rules,” said Sakai. “We expect that brain activation goes down after successfully learning a language because it doesn’t require so much energy to understand”.

“In the future, we can measure brain activations to objectively compare different methods to learn a language and select a more effective technique,” he adds.

One potential application for these findings would be as a biometric tool to assess progress with language skills. But there are also medical applications, the authors explain, such as helping people regain language skills after brain injury or stroke.

The paper “Modality-Dependent Brain Activation Changes Induced by Acquiring a Second Language Abroad” has been published in the journal Frontiers in Behavioral Neuroscience.

share Share

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

Golden Oyster Mushroom Are Invasive in the US. They're Now Wreaking Havoc in Forests

Golden oyster mushrooms, with their sunny yellow caps and nutty flavor, have become wildly popular for being healthy, delicious and easy to grow at home from mushroom kits. But this food craze has also unleashed an invasive species into the wild, and new research shows it’s pushing out native fungi. In a study we believe […]

The World’s Most "Useless" Inventions (That Are Actually Pretty Useful)

Every year, the Ig Nobel Prize is awarded to ten lucky winners. To qualify, you need to publish research in a peer-reviewed journal that is considered "improbable": studies that make people laugh and think at the same time.

This Ancient Greek City Was Swallowed by the Sea—and Yet Refused to Die

A 3,000-year record of resilience, adaptation, and seismic survival

Low testosterone isn't killing your libido. Sugar is

Small increases in blood sugar can affect sperm and sex, even without diabetes

NASA’s Parker Solar Probe Just Flew Closer to the Sun Than Ever Before and the Footage is Breathtaking

Closest-ever solar images offer new insights into Earth-threatening space weather.

The Oldest Dog Breed's DNA Reveals How Humans Conquered the Arctic — and You’ve Probably Never Heard of It

Qimmeq dogs have pulled Inuit sleds for 1,000 years — now, they need help to survive.

A Common DNA Sugar Just Matched Minoxidil in Hair Regrowth Tests on Mice

Is the future of hair regrowth hidden in 2-deoxy-D-ribose?

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.