homehome Home chatchat Notifications


There's a million times more microplastic in the ocean than we thought

We thought microplastics were a big problem... but they're a huge one.

Mihai Andrei
December 12, 2019 @ 11:11 pm

share Share

Microplastics come from household items all around us. Here’s a kitchen sponge with small pieces breaking away. Image credits: Hungchaka / Wikipedia.

If you took 1,000 liters (264 gallons) of ocean water, how many pieces of plastic do you think you’d end up with: a hundred? A thousand? A hundred thousand?

According to a new study, the answer is 8.3 million. That’s 8,300 for every liter of water, or 31,439 per gallon.

That’s also a million times more than previous estimates.

A big tiny problem

The problem with plastic is that it never really goes away — well, it does go away, but it takes centuries or millennia. Instead, what plastic usually does is break down into smaller and smaller pieces, until you can’t really see it; but it’s still there.

Microplastics are pieces of plastic smaller than 5 millimeters. They come from a variety of sources, either from products that contain microplastics themselves (like some cosmetics or cleaning products) or from larger pieces of plastic that break down.

Plastic is everywhere, and it usually makes its way into the oceans. It doesn’t just stay in the water. It’s absorbed by creatures and accumulates higher up the food chain, even ending up inside humans.

It’s not exactly clear how microplastics are affecting wildlife and human health, but establishing just how much of it is around is a good step.

Biological oceanographer Jennifer Brandon had an unsettling idea: what if we’ve been counting microplastics wrong? She suspected that the current counting methods miss the smallest plastic pieces.

“For years we’ve been doing microplastics studies the same way (by) using a net to collect samples,” said Brandon in a press release. “But anything smaller than that net mesh has been escaping.” She suspected that existing papers are missing some of the plastics.

“I saw these published size ranges and thought, we are under-sampling this smaller range. There’s a big knowledge gap,” Brandon said.

So instead, Brandon and colleagues used a different method, gathering samples from both water and salps, gelatinous filter-feeding invertebrates that suck in water both to eat and propel themselves around the upper 2,000 meters (6,500 feet) of the ocean. Salps suck in and expel the water. They presumably also expel the microplastics, but it takes them a few hours to do so, so you’d be able to see if their last meal included any microplastics.

Salps are barrel-shaped gelatinous invertebrates that feed on plankton. They have one of the most efficient examples of jet propulsion in the animal kingdom, and efficient internal feeding filters. Image credits: Peter Southwood / Wikipedia.

The researchers gathered 100 salps and sent them to the Scripps Oceanography, where co-authors Alexandra Freibott and Michael Landry searched for plastic in salp guts. They used a fluorescent microscope because conveniently, plastic lights up when exposed to multiple wavelengths of light — which means it’s easy to detect with this type of method. But the results were not so convenient.

Out of the 100 analyzed salps, 100 contained microplastics. There is good reason to believe that close to 100% of all the ocean’s salps are infested with microplastics. This was even surprising to the researchers.

“I definitely thought some of them would be clean because they have a relatively quick gut clearance time,” Brandon said. The time it takes a salp to consume and defecate is two to seven hours. As filter feeders, salps are almost always eating.

From land to sea

Surprisingly, the concentration of microplastic wasn’t higher around the great garbage patch in the ocean. Instead, there seemed to be more pieces in surface waters closest to the shore. The most likely cause for this is runoff pollution from the land.

Other than that, the plastic distribution seemed to be quite uniform, which is quite concerning. This suggests that the plastic is spread throughout entire ecosystems. Since most plastics are too strong to be broken by bacteria and digestive systems, they are simply passed along the food chain. Humans don’t eat salps, but other things do — and other things eat those other things… and after a few connections, you end up in the range of fish that humans do eat.

“No one eats salps but it’s not far away on the food chain from the things you do eat,” Brandon said.

Some microplastics can also be small enough to enter the human bloodstream. While the consequences of this ingestion are not fully understood, there are valid concerns about potential health impacts.

Microbeads are not a recent problem. We’ve recently started to properly acknowledge it, but according to the United Nations Environment Programme, plastic microbeads appeared when the firs plastics appeared, more than 50 years ago. As the world is producing more and more plastic, the number of microplastics continues to grow dramatically. Researchers from several countries are working to understand their distribution and impacts. Studies such as this one fill an important knowledge gap in this direction.

You can read the full study here.

share Share

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.

Plastics that melt in the ocean offer new hope for cleaner seas

One day we can say goodbye to microplastics.

These Male Octopuses Paralyze Mates During Sex to Avoid Being Eaten Alive

Male blue-lined octopuses paralyze their mates to survive the perils of reproduction.

Scientists Create a 'Power Bar' for Bees to Replace Pollen and Keep Colonies Alive Without Flowers

Researchers unveil a man-made “Power Bar” that could replace pollen for stressed honey bee colonies.

This Caddisfly Discovered Microplastics in 1971—and We Just Noticed

Decades before microplastics made headlines, a caddisfly larva was already incorporating synthetic debris into its home.

​A ‘Google maps for the sea’, sails ​and alternative fuels: ​the technologies steering shipping towards ​lower emissions

 Ships transport around 80% of the world’s cargo. From your food, to your car to your phone, chances are it got to you by sea. The vast majority of the world’s container ships burn fossil fuels, which is why 3% of global emissions come from shipping – slightly more than the 2.5% of emissions from […]

Why the Right Way To Fly a Rhino Is Upside Down

Black rhinos are dangling from helicopters—because it's what’s best for them.