homehome Home chatchat Notifications


Writing a gene in a single day might be possible with new DNA synthesis technique

This is the future of DNA synthesis.

Tibi Puiu
June 19, 2018 @ 3:49 pm

share Share

Scientists at the Lawrence Berkeley National Laboratory in California have demonstrated a new breakthrough method for DNA synthesis that could create a gene in a single day. In the future, researchers could use this technique to synthesize new drug therapies or fuels very quickly.

dna synthesis

Credit: Flickr, ynse.

The first synthetic DNA was demonstrated by Har Gobind Khorana and colleagues in 1972. Although we now have added computers in the mix, the traditional process still involves adding DNA nucleotides, one by one, to a growing chain called an oligonucleotide — or ‘oligo’.

The four nucleotides — the basic building blocks of DNA — are Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). A and G are called Purines while T and C are called Pyrimidines. According to the rules of base pairing, A always pairs with T, and C always pairs with G.

The traditional method for DNA synthesis is slow and error-prone, and scientists can’t add more than 200 letters together — that’s only a tiny fraction of the thousands of letters that make up a typical gene.

In living cells, biological mechanisms replicate DNA very quickly, in under an hour, with very little errors (there are sometimes mutations). To make DNA, cells employ a variety of enzymes, called polymerases, that read a single strand of DNA and then synthesize a complementary strand to bind with it.

In the lab, researchers use a particular polymerase, called terminal deoxynucleotidyl transferase (TdT), which is able to attach new nucleotides to an oligo strand without being required to follow a DNA template strand.

In nature, TdT uses this ability to write variations of genes for antibodies, so the immune system can adapt to new invaders. The problem is that the enzyme adds some new nucleotides randomly. This wouldn’t do in synthetic biology, where the precise control of the sequence of genetic letters is a must.

Up until now, scientists were forced to use a rather unelegant workaround, adding one nucleotide at a time, stopping in between, then repeating the process with a different nucleotide. It takes about an hour to add each modified base, which is far too slow to be practical.

Sebastian Palluk and Daniel Arlow, both Ph.D. students at Jay Keasling’s lab at the Lawrence Berkeley National Laboratory in California, devised a novel method to synthesize DNA.

They used four separate pools for the four DNA letters, each one with copies of TdT tethered to either A, G, C, or T. In order to grow an oligo, the researchers added a base from one of the pools. The TdT that adds the base to the end of oligo blocks additional copies of the enzyme from reacting with the oligo. This is retrieved, the tethered is cut off, allowing the oligo to receive the next base in the sequence.

The enzyme is easy to make from bacteria and yeast, which translates into low cost. Its presence also speeds up the process, allowing new nucleotides to grow on an oligo in 10 to 20 seconds. The tether snipping step takes about a minute. A whole gene could take only a day.

Speaking for Science, George Church, an estimated geneticist at Harvard University, said the new method “is the future.” However, he stresses that, for now, the approach isn’t ready to replace conventional DNA synthesis. The oligos demonstrated by the group are no longer than 10 bases. There are also writing problems, as the approach was only 98% accurate, compared to 99%, which is the standard for the conventional approach.

The findings were reported in the journal Nature Biotechnology.

share Share

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

These findings challenge what we thought we knew about life in the deep sea.

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren't They In Your Phones and Cars Yet?

Solid state are miles ahead lithium-ion, but several breakthroughs are still needed before mass adoption.

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

Is Roman concrete more sustainable? It's complicated.