homehome Home chatchat Notifications


Scientists synthesize antibiotics to conquer resistant microbes

A synthetic approach for remodifying existing antibiotics could give us the upper hand against resistant bacteria.

Tibi Puiu
September 24, 2020 @ 12:16 pm

share Share

Credit: Pixabay.

The COVID-19 pandemic is on everyone’s mind right now. However, there’s another medical crisis looming that may be far more dangerous and consequential for decades to come. Scientists have been warning for years that microbes are becoming resistant to even the strongest antibiotics we throw at them. According to a new study, our silver lining might lie in the chemical synthesis of antibiotics that neutralize microbial adaptations.

Revisiting shelved antibiotics

After Alexander Fleming’s discovery of penicillin in 1928, the world entered the golden age of antibiotics. Within a remarkably small timeframe, the wide-scale adoption of antibiotics post-WWII changed the leading cause of death in the United States from communicable diseases to non-communicable diseases (cardiovascular disease, cancer, and stroke), and raised the average life expectancy at birth from 48 years to 78.8 years.

But microbes haven’t stayed idle. Some bacteria developed proteins or other molecules that allow them to multiply despite the presence of antibiotics. When such adaptations occur in a population, they quickly proliferate. This is why tens of thousands of preventable deaths occur each year due to drug-resistant strains of common bacteria like Staphylococcus aureus and Enterococcus faecium.

Until not too long ago, streptogramins, a class of antibiotics, used to be very effective against S. aureus infections. But then the bacteria started to produce proteins called virginiamycin acetyltransferases (Vats), which recognize streptogramins and will chemically deactivate these drugs before they can bind to the cell’s ribosome. This is why streptogramins are considered to be useless in many cases, especially for hospital-acquired bacterial infections.

But we shouldn’t cross out streptogramins just yet. Like most antibiotics, streptogramins are derived from naturally occurring compounds produced by other bacteria, which are later tweaked for optimized performance in the human body.

Assembling antibiotics like LEGO bricks

Researchers at the University of California San Francisco employed a different approach to antibiotic production, which enabled them to synthesize streptogramins that can overcome the resistance conferred by Vat enzymes.

However, the scientists didn’t create new antibiotics from scratch. That would be too time-consuming, expensive, and prone to failure. Instead, the team led by Ian Seiple, an assistant professor in the UCSF School of Pharmacy’s Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute (CVRI), took a modular approach, redesigning existing streptogramins by altering and joining together precursor molecules like LEGO pieces. The resulting “rebuilds” of existing drugs blocked Vats from deactivating the antibiotics.

“The aim is to revive classes of drugs that haven’t been able to achieve their full potential, especially those already shown to be safe in humans,” said Seiple in a statement. “If we can do that, it eliminates the need to continually come up with new classes of drugs that can outdo resistant bacteria. Redesigning existing drugs could be a vital tool in this effort.”

“This system allows us to manipulate the building blocks in ways that wouldn’t be possible in nature,” added the researcher, who is the lead author of the new study published today in the journal Nature . “It gives us an efficient route to re-engineering these molecules from scratch, and we have a lot more latitude to be creative with how we modify the structures.”

In order to determine which LEGO bricks they would have to modify, the researchers employed cryo-electron microscopy and x-ray crystallography to create three-dimensional pictures of the drug at near-atomic resolution. They also modeled the bacterial ribosome and the Vat protein. This way, the researchers could isolate molecules that are essential to antibiotic function.

The team of researchers found that two of the seven building blocks for streptogramins were promising targets for chemical modification. After tweaking these regions, the researchers came up with a new promising candidate against streptogramin-resistant S. aureus. Experiments on mice showed that the antibiotic was over 10 times more effective than classical streptogramins.

According to Seiple, the same approach can be applied to other classes of antibiotics that have been shelved due to microbial resistance.

“We learned about mechanisms that other classes of antibiotics use to bind to the same target,” he said. “In addition, we established a workflow for using chemistry to overcome resistance to antibiotics that haven’t reached their potential.”

“It’s a never-ending arms race with bacteria,” said James Fraser, a professor in the School of Pharmacy’s Department of Bioengineering and Therapeutic Sciences in the UCSF School of Pharmacy. “But by studying the structures involved— before resistance arises—we can get an idea of what the potential resistance mechanisms will be. That insight will be a guide to making antibiotics that bacteria can’t resist.” 

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths