homehome Home chatchat Notifications


Scientists quantum entangle individual molecules for the first time

A new type of quantum computing technology is now on the horizon.

Tibi Puiu
December 12, 2023 @ 2:19 pm

share Share

quantum entangled molecules
Credit: DALL-E 3.
Key takeaways:
  • 🔬 Princeton physicists entangle molecules, extending quantum mechanics boundaries.
  • đź’» Entangled molecules could be key to future quantum computers and advanced sensors.
  • đź‘» The findings demonstrate “spooky action at a distance” also works for molecules, not just atoms and ions.

Princeton physicists have successfully linked individual molecules into quantum mechanically entangled states. This groundbreaking feat allows molecules to remain interconnected across vast distances, a phenomenon often described as one of the most bizarre in quantum mechanics.

New possibilities in quantum science

This linkage persists regardless of the physical distance between the molecules, embodying the concept of “spooky action at a distance” as once skeptically noted by Albert Einstein. Previously, only individual atoms and ions could be coaxed into this state.

The research, led by Assistant Professor Lawrence Cheuk and his team at Princeton University, marks a pivotal advancement in understanding quantum entanglement. Entanglement, a core principle of quantum mechanics, occurs when particles become so deeply connected that the state of one instantaneously influences the other, no matter the distance separating them.

Cheuk and his team envision entangled molecules as foundational elements for future technologies like quantum computers, capable of outperforming traditional computing in specific tasks. Additionally, quantum simulators and sensors, leveraging entanglement, promise advancements in modeling complex materials and enhanced measurement capabilities, respectively.

Computing devices based on quantum phenomena like entanglement are supposed to be orders of magnitude more powerful than conventional computers based on silicon transistors. Their edge or “quantum advantage” stems from the principles of superposition and quantum entanglement, where quantum bits, or qubits, can exist in multiple states simultaneously, unlike the binary states of classical computer bits.

However, achieving controllable quantum entanglement remains extremely challenging. Qubits are highly sensitive to noise and hold their quantum state typically for very short periods before losing ‘coherence’. As a result, the current state of the art is crippled by errors and today’s quantum computers are unlikely to output correct answers even for relatively trivial programs — for now.

This explains why the quantum computing landscape is rich in dozens of competing technologies. There are quantum computers that work with trapped ions, photons, and superconducting circuits — just to name a few — all vying for the billion-dollar breakthrough that might finally fulfill the industry’s promise of taking computers to the next level.

Now, with this most recent advance, quantum computers that use molecular qubits can be added to this growing list of experimental technologies.

“What this means, in practical terms, is that there are new ways of storing and processing quantum information,” said Yukai Lu, a graduate student in electrical and computer engineering and a co-author of the paper.

“For example, a molecule can vibrate and rotate in multiple modes. So, you can use two of these modes to encode a qubit. If the molecular species is polar, two molecules can interact even when spatially separated.”

Despite being notoriously difficult to control due to their complexity, Cheuk and colleagues have shown molecules are promising candidates. In their experiment, the scientists used a sophisticated “tweezer array” whereby a system of tightly focused laser beams manipulated individual calcium monofluoride molecules.

The laser system cooled the molecules to temperatures a fraction of a degree above absolute zero. At such an ungodly low temperature, vibration is almost nonexistent, making the molecules almost perfectly still. Pairs of calcium monofluoride were ultimately coaxed to enter a quantum entanglement state by correlating their dipolar interaction.

Reinforcing their findings, a separate group at Harvard University and MIT achieved similar results, validating the reliability and potential of molecular tweezer arrays in quantum science.

“The fact that they got the same results verify the reliability of our results,” Cheuk said in a press release. “They also show that molecular tweezer arrays are becoming an exciting new platform for quantum science.”

As we stand at the brink of a new era in quantum science, the implications of these discoveries are profound. From reshaping computing to redefining how we understand the fabric of our universe, the entanglement of molecules opens a world of possibilities, beckoning a future where quantum mechanics moves from theoretical wonder to practical reality.

The findings appeared in the journal Science.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes