homehome Home chatchat Notifications


Great white shark genome might teach us how to heal faster or stave off cancer

Scientists sink their teeth in the great white's genome

Tibi Puiu
February 19, 2019 @ 7:20 pm

share Share

Credit: Wikimedia Commons.

Credit: Wikimedia Commons.

Great whites are some of the most recognizable marine species. Our fascination for these majestic, but also fearsome creatures deepens now that scientists have completed the first genome sequencing of the iconic apex predator.

Scientists sink their teeth in the great white’s genome

The great white’s genome was decoded by an international team of researchers, including those at the Nova Southeastern University’s (NSU) Save Our Seas Foundation Shark Research Center, Guy Harvey Research Institute (GHRI), Cornell University College of Veterinary Medicine, and Monterey Bay Aquarium.

Decoding the white shark genome is providing science with a new set of keys to unlock lingering mysteries about these feared and misunderstood predators – why sharks have thrived for some 500 million years, longer than almost any vertebrate on earth” said Dr. Salvador Jorgensen, a Senior Research Scientist at the Monterey Bay Aquarium, who co-authored the study.

According to the results, the great white genome contains one-a-half times more information than the human genome. That was not surprising to learn, given that they have 41 pairs of chromosomes, whereas humans have only 23.

There’s no doubt that great whites (Carcharodon carcharias) have experienced tremendous evolutionary success. They’re found throughout most of the world’s oceans, grow up to half the length of a bus, have more than 300 razor-sharp, triangular teeth arranged in seven rows, can detect a seal from two miles away, and are the top of the food chain. Their only threat is humans, whose overfishing and illegal hunting have caused the great white shark to be listed as a vulnerable species on the IUCN Red List.

Not only can great white grow to a large size, but they also have a long lifespan, easily reaching 70 years in the wild. But, despite their size and lifespan, the predators rarely get cancer. Previously, research had established a linear relationship between an animal’s body size and the incidence of cancer, but the great white seems to be one of those rare exceptions. The new study suggests that this is partly due to the great white’s genome stability — genetic adaptations which help preserve its genome.

Another remarkable feature of great whites is their extraordinary ability to regenerate quickly. Researchers have tracked back this ability to certain genes that are tied to fundamental pathways involved in wound healing, including a key blood clotting gene.

“Not only were there a surprisingly high number of genome stability genes that contained these adaptive changes, but there was also an enrichment of several of these genes, highlighting the importance of this genetic fine-tuning in the white shark,” said Mahmood Shivji, who is the director of NSU’s Save Our Seas Foundation Shark Research Center.

“Genome instability is a very important issue in many serious human diseases; now we find that nature has developed clever strategies to maintain the stability of genomes in these large-bodied, long-lived sharks,” said Shivji. “There’s still tons to be learned from these evolutionary marvels, including information that will potentially be useful to fight cancer and age-related diseases, and improve wound healing treatments in humans, as we uncover how these animals do it.”

Decoding the white shark’s genome is a great breakthrough that will help conserve the species. For instance, the genome data could be used to better assess white population dynamics. The insight gained from the great white’s genome might also lead to novel cancer drugs in the future.

The findings were reported in the journal PNAS. 

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes