homehome Home chatchat Notifications


Nanoribbons pave the way for switching graphene 'on-off'

A novel and better way to make graphene into a semiconductor.

Dragos Mitrica
April 3, 2017 @ 7:40 pm

share Share

Among its many stellar properties, graphene is an amazing electrical conductor. However, if graphene is to reach its full potential in the field of electronics, it needs to coaxed to turn current on or off like silicon transistors. Physicists at the Department of Energy’s Oak Ridge National Laboratory (ONRL) present a recent breakthrough that may enable graphene to act like a semiconductor. The catch is to grow graphene in curled nanoribbons rather than in flat 2-D sheets.

This graphene nanoribbon is only seven carbon atoms in width. Credit: Chuanxu Ma and An-Ping Li

This graphene nanoribbon is only seven carbon atoms in width. Credit: Chuanxu Ma and An-Ping Li

When arranged in wide sheets, the hexagon-linked graphene doesn’t have a band gap, which means you can’t use it in modern electronics like computer chips or solar panels. It’s a great electrical wire but useless as a transistor. That’s speaking about its traditional configuration because graphene can work as a semiconductor in other arrangements. Doping graphene with various impurities can enable the material to switch on or off, for instance, DNA and copper ions as demonstrated previously by another team. 

The team from ONRL, however, made semiconductive graphene with no other additional material by fashioning it in ribbons because when graphene becomes very narrow, it creates an energy gap. The narrower the ribbon is, the wider the energy gap and the ribbons made at ONRL are definitely narrow. One nanoribbon has a width of only one nanometer or less.

Besides narrowness, another important factor is the shape of the edge. When graphene’s hexagon is cut along the side, its shapes resembles an armchair — this shape enables the material to act like a semiconductor.

Previously, scientists made graphene nanoribbons by growing them on a metal substrate. This was necessary but undesirable because the metal hinders some of the ribbons’ useful electrical properties.

The scanning tunneling microscope injects charge carriers called “holes” into a polymer precursor. . Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

The scanning tunneling microscope injects charge carriers called “holes” into a polymer precursor. . Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

ONRL took a different route to get rid of the metal substrate altogether. To trigger chemical reactions that control the width and edge structure from polymer precursors, the team used the tip of a scanning tunneling microscope to inject positive charge carriers called ‘holes’. The reaction could be triggered at any point of the polymer chain by moving the tip in the right direction. This method rendered ribbons that were only seven carbon atoms wide whose edges were neatly wrapped in the armchair configuration.

“We figured out the fundamental mechanism, that is, how charge injection can lower the reaction barrier to promote this chemical reaction,” said An-Ping Li, a physicist at the Department of Energy’s Oak Ridge National Laboratory.

Moving forward, the researchers plan on making the heterojunctions with different precursor molecules. One exciting possibility is conducting photons in a new electronic device with graphene semiconductors where current could be carried with virtual no resistance even at room temperature — a life-long dream in solid state physics.

“It’s a way to tailor physical properties for energy applications,” Li said. “This is an excellent example of direct writing. You can direct the transformation process at the molecular or atomic level.”

Scientific reference: Chuanxu Ma et al, Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons, Nature Communications (2017). DOI: 10.1038/ncomms14815.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.