homehome Home chatchat Notifications


The curious case of Jupiter's lightning, solved by the Juno craft

Lightning bolts on Jupiter are both similar and completely different from those on Earth.

Alexandru Micu
June 7, 2018 @ 12:18 pm

share Share

Lightning bolts on Jupiter are both similar and completely different from those on Earth, research suggests.

Jupiter Lightning.

Artist’s concept of lightning in Jupiter’s northern hemisphere. The image is based on a JunoCam image.
Image credit:sNASA/JPL-Caltech/SwRI/JunoCam.

A new paper published by NASA’s Juno mission comes to flesh out our understanding of Jovian lightning. Their existence was first confirmed when the Voyager 1 craft flew past Jupiter in March 1979 — but that encounter also left us with more unanswered questions. Radio emissions produced by these lightning bolts didn’t match the signatures of those on Earth, for example.

God of Lightning

“No matter what planet you’re on, lightning bolts act like radio transmitters—sending out radio waves when they flash across a sky,” said lead author Shannon Brown of NASA’s Jet Propulsion Laboratory in Pasadena, California.

“But until Juno, all the lightning signals recorded by spacecraft were limited to either visual detections or from the kilohertz range of the radio spectrum, despite a search for signals in the megahertz range. Many theories were offered up to explain it, but no one theory could ever get traction as the answer.”

Fancy science-speak for ‘we didn’t have a clue what was up’. The Juno mission, however, gave researchers a chance to dig deeper into Jupiter’s lightning. The craft has been orbiting the gas giant since July 4, 2016. Among other onboard equipment, it boasted a Microwave Radiometer Instrument (MWR) to record emissions across a wide spectrum of frequencies

During its first eight flybys of Jupiter, Juno detected 377 lightning discharges, the team reports. Emissions were recorded in both the megahertz and gigahertz range, “which is what you can find with terrestrial lightning emissions,” according to Brown.

“We think the reason we are the only ones who can see it is because Juno is flying closer to the lighting than ever before, and we are searching at a radio frequency that passes easily through Jupiter’s ionosphere,” she adds.

These recordings show that lightning on Jupiter is very similar to that on Earth — but there are also differences.

Most striking of all is how these discharges are distributed across the planet’s surface. On Jupiter, these bolts of lightning flash frequently across the giant’s poles, but never over the equator. This doesn’t hold true on Earth. The reason behind this, the team believes, is how heat is distributed across the two planets.

The overwhelming majority of heat on Earth comes from the Sun. Our equator receives a much larger slice of this energy than the rest of the planet (that’s why it’s the hottest bit), meaning air masses above the equator have a lot of energy at their disposal to move around through convection. This movement is what fuels the thunderstorms which, in turn, produce lightning.

On Jupiter, however, sunlight is much, much dimmer. The giant is, after all, five times farther away from the Sun than Earth. This means the planet receives 25 times less heat than our planet. Most of the energy in Jupiter’s atmosphere is derived from its solid core. However, the team explains, that tiny quantity of heat it does receive from the Sun does heat up its equator more than the poles. The team believes that this difference in temperature is enough to stabilize Jupiter’s upper atmosphere around the equator, preventing gases further below to rise through convection.

The atmosphere around Jupiter’s poles, which receive less energy, isn’t stable — warm gases rising from below drive convection processes, creating lightning.

“These findings could help to improve our understanding of the composition, circulation and energy flows on Jupiter,” said Brown. But another question looms, she said. “Even though we see lightning near both poles, why is it mostly recorded at Jupiter’s north pole?”

The paper “Prevalent lightning sferics at 600 megahertz near Jupiter’s poles” has been published in the journal Nature.

share Share

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

The Earth was trembling every 90 seconds. Now, we know why.

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.