homehome Home chatchat Notifications


Hubble snaps breathtaking new image of Jupiter

Looks tasty, honestly.

Alexandru Micu
August 12, 2019 @ 5:45 pm

share Share

Jupiter is still pretty, science finds.

Jupiter.

Image credits NASA, ESA / A. Simon (Goddard Space Flight Center) and M.H. Wong (University of California, Berkeley)

The image was taken on June 27, 2019 and centers on the planet’s titanic Great Red Spot. It records Jupiter’s color palette, swirling clouds, and turbulent atmosphere in much higher quality than previously-available images. These elements provide an important glimpse into the processes unfurling in the gas giant’s atmosphere.

Ten year challenge photo

The image was taken in visible light as part of the Outer Planets Atmospheres Legacy program (OPAL). It was snapped with Hubble’s Wide Field Camera 3 when Jupiter was 400 million miles from Earth — near “opposition,” or almost directly opposite the Sun in the sky.

OPAL generates global views of the outer planets each year using the Hubble Telescope, which are meant to provide researchers with the data they need to track changes in their storm, wind, and cloud dynamics.

One of Jupiter’s most striking features is the Great Red Spot, around which the current image focuses. The Spot is a churning storm, rolling counterclockwise between two bands of clouds (above and below the Great Red Spot) which are moving in opposite directions. The red band to the northeast of the Great Red Spot contains clouds moving westward and around the north of the giant tempest. The white clouds to its southwest are moving eastward to the south of the spot. The swirling filaments seen around its outer edge are high-altitude clouds that are being pulled in and around the storm.

Jupiter’s bands are created by differences in the thickness and height of the ammonia ice clouds that blanket its surface, both properties dictated by local variations in atmospheric pressure. The more colorful bands and are generally ‘deeper’ clouds. Lighter bands rise higher and are thicker, generally, than the darker ones. 

Winds between bands can reach speeds of up to 400 miles (644 kilometers) per hour. All of the bands seen in this image are corralled to the north and to the south by powerful, constant jet streams — these remain stable even as the bands change color on the other side of the planet.  The band of deep red and bright white that border the Giant Red Spot also become much fainter on the other side of Jupiter.

You can learn more about how these colors form here.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.