homehome Home chatchat Notifications


Grasses steal neighbors' genes to one-up other species

"They're OUR genes, tovarish plant" -- grasses.

Alexandru Micu
February 18, 2019 @ 11:30 pm

share Share

Grasses don’t play evolution by the rules, a new study reports. Instead of putting in the time to evolve beneficial genes, they just steal them from neighbors.

Foxtail grass.

Image via Pixabay.

New research at the Department of Animal and Plant Sciences at the University of Sheffield found that grasses engage in lateral gene transfer to acquire new, beneficial genes. The findings can help scientists reduce the risk of so-called “super-weeds” appearing — which form when wild plants take genes from GM (genetically-modified) crops to become resistant to herbicides.

Nice genes you got there

The findings suggest that wild grasses are basically genetically modifying themselves to gain a competitive advantage. This process stands in contrast to the theory of evolution as described by Charles Darwin, where natural selection affects which genes get passed from parent to offspring. It’s also, probably, a very lucrative deal for the grasses.

“Grasses are simply stealing genes and taking an evolutionary shortcut,” says lead author Dr Luke Dunning from the Department of Animal and Plant Sciences at the University of Sheffield.

“They are acting as a sponge, absorbing useful genetic information from their neighbours to out compete their relatives and survive in hostile habitats without putting in the millions of years it usually takes to evolve these adaptations.”

Grasses — including power-crops such as wheat, rice, or sugar cane — are some of the most economically and ecologically important plants on Earth. In a bid to understand their evolutionary journey, the team looked at the genome of Alloteropsis semialata, or black seed grass. This plant is spread quite widely across the planet, making a home in grasslands throughout Africa, Asia, and Australia.

Alloteropsis semialata flowers.

Alloteropsis semialata flowers.
Image credits Marjorie Lundgren via Wikimedia.

A. semialata’s genome was then compared to that of approximately 150 other species of grasses, including rice, maize, millets, barley, and bamboo. Based on this comparison, the team identified several genes that the grass laterally acquired from distant relatives (they looked for DNA sequences that were similar between two or more grass species). Furthermore, they found evidence that this process happens on a local level — in other words, the grass takes genes from its ecosystem-mates.

“We also collected samples of Alloteropsis semialata from tropical and subtropical places in Asia, Africa, and Australia so that we could track down when and where the transfers happened,” said Dr Dunning.

“Counterfeiting genes is giving the grasses huge advantages and helping them to adapt to their surrounding environment and survive — and this research also shows that it is not just restricted to Alloteropsis semialata as we detected it in a wide range of other grass species”

The team points out that this process is essentially the same as the technology behind GMO crops. As such, they hope the findings will help “us as a society reconsider how we view GM technology.”

“Eventually, this research may also help us to understand how genes can escape from GM crops to wild species or other non-GM crops, and provide solutions to reduce the likelihood of this happening,” Dr Dunning adds. “The next step is to understand the biological mechanism behind this phenomenon and we will carry out further studies to answer this.”

The paper “Lateral transfers of large DNA fragments spread functional genes among grasses” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

This nimble dinosaur may have sparked the evolution of one of the deadliest predators on Earth.

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

People still make the funniest memes but AI is catching up fast.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.