homehome Home chatchat Notifications


The world's first gene-engineered reptiles are all albinos

No other team has successfully applied gene-editing techniques to reptiles.

Alexandru Micu
August 28, 2019 @ 6:58 pm

share Share

Researchers report producing the first gene-edited reptiles ever.

An albino lizard hatchling.
Image credits Doug Menke.

A new study reports on the use of CRISPR-Cas9 to create albino brown anole lizards (A. sagrei). No other team has successfully applied gene-editing techniques to reptiles. The study also shows that the gene-edited lizards can also pass the modified genes for albinism to their offspring.

CRISPy lizards

“For quite some time we’ve been wrestling with how to modify reptile genomes and manipulate genes in reptiles, but we’ve been stuck in the mode of how gene editing is being done in the major model systems,” says corresponding author Doug Menke, an associate professor at the University of Georgia.

“We wanted to explore anole lizards to study the evolution of gene regulation, since they’ve experienced a series of speciation events on Caribbean islands, much like Darwin’s finches of the Galapagos.”

In most model species (such as lab rats, for example) CRISPR-Cas9 is employed by injecting gene-editing vectors into freshly fertilized eggs or single-cell zygotes (i.e. after fertilization). However, this approach can’t be used on reptiles, as they employ an internal fertilization process making it hard to predict when an egg becomes fertilized. It’s also hard to isolate a single-celled embryo from momma lizard, which means we can’t transfer it out into a lab dish and work on it.

Menke and his team, however, noticed that the transparent membrane over the species’ ovary allowed them to track all of the developing eggs, including which eggs were going to be ovulated and fertilized next. They then decided to inject the CRISPR elements into unfertilized eggs within the ovaries.

“Because we are injecting unfertilized eggs, we thought that we would only be able to perform gene editing on the alleles inherited from the mother. Paternal DNA isn’t in these unfertilized oocytes,” Menke says.

He explains that it took three months for the lizards to hatch, and says that the procedure is “a bit like slow-motion gene editing”. By the end, the researchers found that about 6% to 9% of the oocytes, depending on their size, produced offspring with gene-editing events. Around half of the edited lizards held modified genes from both parents. The findings indicate that the CRISPR components remain active for several days, or even weeks, within the unfertilized eggs.

In some other model animals, CRISPR-Cas can have efficiencies up to 80% or higher, which would make the present 6% seem like a paltry amount, Menke explains.

“But no one has been able to do these sorts of manipulations in any reptile before,” he says. “There’s not a large community of developmental geneticists that are studying reptiles, so we’re hoping to tap into exciting functional biology that has been unexplored.”

The team decided to use albinism genes for the study because they result in an obvious physical trait (loss of pigmentation) without being lethal to the animal. Secondly, they wanted to use the lizards as a model to study how the loss of pigmentation impacts retina development, as humans with albinism often have vision problems. The anole lizards are ideally suited for this: their eyes have a fovea, a pit-like structure in the retina that underpins high-acuity vision, which humans share, but most of our main animal models lack.

Ultimately, this gene-editing technique could be translated for use in other animals, Menke adds.

“We never know where the next major insights are going to come from, and if we can’t even study how genes work in a huge group of animals, then there’s no way to know if we’ve explored everything there is to explore in the realm of gene function in animals,” Menke says.

“Each species undoubtedly has things to tell us, if we take the time to develop the methods to perform gene editing.”

The paper “CRISPR-Cas9 Gene Editing in Lizards through Microinjection of Unfertilized Oocytes” has been published in the journal Cell Reports.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.