homehome Home chatchat Notifications


Human SARS antibody could pave the way towards a COVID-19 cure

An antibody isolated from a SARS (Severe Acute Respiratory Syndrome) survivor after the 2003 epidemic could pave the way towards a treatment for COVID-19. The antibody, named S309, is currently “on a fast-track development and testing path” with California-based Vir Biotechnology. according to a press release. Preliminary findings, published in a study in the journal […]

Alexandru Micu
May 19, 2020 @ 6:21 pm

share Share

An antibody isolated from a SARS (Severe Acute Respiratory Syndrome) survivor after the 2003 epidemic could pave the way towards a treatment for COVID-19.

Stock image.
Image credits Michal Jarmoluk.

The antibody, named S309, is currently “on a fast-track development and testing path” with California-based Vir Biotechnology. according to a press release. Preliminary findings, published in a study in the journal Nature, suggest that the antibody should be effective against several members of the coronavirus family, including the strain responsible for the current pandemic.

New virus, old tricks

“Right now there are no approved tools or licensed therapeutics proven to fight against the coronavirus that causes COVID-19,” says David Veesler, assistant professor of biochemistry at the University of Washington School of Medicine and lead author of the study. He adds that “we still need to show that this antibody is protective in living systems, which has not yet been done.”

The antibody works against the SARS virus by chemically binding to its spike proteins (the structures that look like ‘spikes’ on the virus’ surface). These are crucial for the mechanisms the virus uses to perceive, access, and infect human cells. By blocking them, the antibody effectively destroys its ability to cause illness.

However, one finding of the study points the way to an exciting possibility: that S309 can also neutralize SARS-CoV-2, the coronavirus responsible for the current outbreak, as well as other strains in its extended family.

First, the team isolated several monoclonal antibodies from the B-type lymphocytes (white blood cells) of a person who got infected and then recovered during the SARS epidemic of 2003. Although these antibodies were tailored to fight another virus, it was for one closely related to the coronavirus, making it likely that they would also interact with it.

Type B lymphocytes form some of the immune system’s ‘memory cells’. Memory cell surfaces are littered with protein receptors that bind to antigens (molecules that give away the presence of an infection) of pathogens the body has fought off in the past. Once this reaction takes place, they direct the body to start producing appropriate antibodies.

Through the use of cryo-electron microscopy studies and binding assays, the team found that the S309 antibody binds to a spike protein that is identical across many lineages of the coronavirus family. This protein is also a critical part of its ability to infect cells, so it’s very unlikely that it would suffer mutations over time. Even better, it’s identical across many coronaviruses the team investigated — meaning it could fight all of those strains.

While the S309 antibody was particularly good at this task, it wasn’t the only useful one. Other antibodies isolated from the patient could also bind to the spike protein, although not as strongly. The authors say a mix of all these antibodies would form the basis of the new treatment. This way, they can support each other’s activity and ensure the highest level of protection possible across multiple strains and in the face of any mutation of the spike proteins, however unlikely.

The treatment could be used to prevent infection in people at high risk of exposure, but it doesn’t work as a vaccine — it would offer protection only for a limited time. Alternatively, it can be applied as therapy for severe cases of COVID-19 in patients who are already infected.

The paper “Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody” has been published in the journal Nature.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.