homehome Home chatchat Notifications


MIT polymer paves the way for solar-heated clothes

MIT scientists have developed a material that can absorb solar energy, stores and release it on demand to produce heat. Made from a film of polymer, the material could be used to used to tailor cold climate garments that charge up during the day and keep you pleasantly warm in the evening.

Alexandru Micu
January 18, 2016 @ 1:16 pm

share Share

MIT scientists have developed a material that can absorb solar energy, store and release it on demand to produce heat. Made from a film of polymer, the material could be used to used to tailor cold climate garments that charge up during the day and keep you pleasantly warm in the evening.

Image via inhabitat

The polymer weave absorbs energy from the sun’s rays and stores it through chemical reactions within a transparent film. The material contains certain molecules that move into a “charged position” when exposed to sunlight.

Storing energy in a chemical form is desirable as the compounds are stable enough to allow the user to draw on the reserves at their own discretion. The energy from the material can be released with widely available catalysts. For example, the heat stored in a solar-charged jacket can be released when it’s subjected to a powerful flash of light or when exposed to an electrical current.

The team claims the polymer can heat up to 60 degrees Fahrenheit, and it can store solar energy for an indefinite amount of time.

If applied to clothing, the sun-storing material could benefit everyone from athletes or cold-weather workers, as well as regular fashionistas living in chilly environments.

Researchers say the film is easy to produce, in a two step process. They are looking to apply the energy-harvesting film to materials and products like clothing, window glass and industrial products.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.