homehome Home chatchat Notifications


Carbon nanotubes may help increase the efficiency of tomorrow's solar cells

Every time a new manufacturing or development technology concerning solar cells was introduced, the futurists and tech pundits were quick to hail the coming of a new generation. The first were the monocrystal silicon cells doped with Phosphorus and Boron in a pn-junction; these are expensive to produce, yet comprise 80% of the total solar panel […]

Tibi Puiu
March 19, 2014 @ 11:15 am

share Share

Every time a new manufacturing or development technology concerning solar cells was introduced, the futurists and tech pundits were quick to hail the coming of a new generation. The first were the monocrystal silicon cells doped with Phosphorus and Boron in a pn-junction; these are expensive to produce, yet comprise 80% of the total solar panel market. The second generation cells are usually called thin-film solar cells because when compared to crystalline silicon based cells they are made from layers of semiconductor materials only a few micrometers thick. Such cells include amorphous silicon cells, polycristalline silicon or Copper Indium diSelenide (CIS) cells; these cells have a lower efficiency than the 1st generation, yet they compensate by being very cheap. The third generation of solar cells are the most efficient cells. These cells are made from new materials besides silicon, including silicon wires, solar inks using conventional printing press technologies, organic dyes, quantum dots and conductive plastics.

So, when will the fourth generation be upon us? Looking forward, some might imply that the new wave of solar cells might be comprised, among other, by carbon nanotubes. A lot of efforts have been infested into carbon nanotube research in the past decade or so. Concerning solar cells, scientists are particularly interested in these one dimensional nanoscale cylinders made of carbon atoms because they possess some unique properties. Nanotubes have a fantastic tensile strength and an exceptional electron mobility, which makes them ideal for use in solar cells where carrying charge is paramount.

Photo:  Umeå University

Photo: Umeå University

By providing a better charge carrying medium, carbon nanotubes can significantly increase cell efficiency. However, in order to obtain the highest performance for electronic applications, the carbon nanotubes must be assembled into a well-ordered network of interconnecting nanotubes. Manufacturing tech today isn’t the best in this respect, so previous efforts thus far have been unsatisfying.

Scientists at Umeå University in Sweden found a way, however, to engineer these nanotube networks in a manner that is practical. For the first time, the researchers show that carbon nanotubes can be engineered into complex network architectures, and with controlled nano-scale dimensions inside a polymer matrix. The method offers a high degree of control and involves using far less nanotubes compared to other conventional methods, making the process cheaper by reducing material-related costs.

“We have found that the resulting nano networks possess exceptional ability to transport charges, up to 100 million times higher than previously measured carbon nanotube random networks produced by conventional methods,” says Dr David Barbero, leader of the project and assistant professor at the Department of Physics at Umeå University.

The Umea research was published in the journal Advanced Materials. Other important developments in this area include the work of Stanford researchers on an all-carbon solar cell, which promises to dramatically reduce costs if proven efficient. While the present research discusses a polymer solution to building carbon nanotube networks, worth mention are the developments made at University of Illinois  where a group there found a way to solder carbon nanotubes together. The method basically allows researchers to arrange carbon nanotubes for use as transistors where they could be embedded into thin sheets of plastic or flat-panel displays, but it could find its uses in solar cells too.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.