homehome Home chatchat Notifications


New technique that allows self-soldering of carbon nanotubes may help replace silicon transistors

Carbon nanotubes and graphene have been hailed time and again as the wonder materials that will change the face of technology in the future. Before silicon can be dethroned from its reigning position, however, a lot of manufacturing issues need to be addressed. A new technique developed by researchers at University of Illinois provides a […]

Tibi Puiu
November 28, 2013 @ 11:18 am

share Share

Carbon nanotubes and graphene have been hailed time and again as the wonder materials that will change the face of technology in the future. Before silicon can be dethroned from its reigning position, however, a lot of manufacturing issues need to be addressed. A new technique developed by researchers at University of Illinois provides a simple and straight-forward way of soldering carbon nanotubes together, that is consistent with current manufacturing technologies and thus inexpensive. The method basically allows researchers to arrange carbon nanotubes for use as transistors where they could be embedded into thin sheets of plastic or flat-panel displays and effectively allow highly flexible electronics to be made, where silicon is currently unsuited for.

Carbon nanotubes, as the name implies, are extremely thin  tube-shaped materials, made of carbon, having a diameter measuring on the nanometer scale.  A nanometer is one-billionth of a meter, or about one ten-thousandth of the thickness of a human hair.  The graphite layer appears somewhat like a rolled-up chicken wire with a continuous unbroken hexagonal mesh and carbon molecules at the apexes of the hexagons. Carbon nanotubes are extremely sought after because of their amazing properties. For instance you can construct them with length-to-diameter ratio of up to 132,000,000:1! Where they truly sparkle, however, is in their fantastic electrical conductivity properties, so naturally they’re seen as great contenders for the material that will dominate the technological age of tomorrow.

To make transistors out of carbon nanotubes is very difficult as of now, unfortunately. In an array of nanotubes, to make transistors, you need to slow down or stop the current altogether at junctions. In a standard circuit, the connecting wires are soldered together, but with nanotubes we’re talking on an extremely minuscule scale. Not even the tinniest soldering iron in the world could help you out. When there’s a will, there’s a way, though – you just need to think outside the box.

[ALSO READ] First computer made out of carbon nanotubes spells silicon demise in electronics 

Joseph Lyding, a professor of electrical and computing engineering at University of Illinois, along with colleagues have found one such way of soldering carbon nanotubes. Though carbon nanotubes have amazing electrical conductivity properties, that doesn’t mean that they’re superconductive too. As current passes through them, some of that energy is lost as heat which causes a temperature gradient in their vicinity. In a stroke of ingenuity, the researchers controlled chemical reactions that occur at certain temperatures to happen only in certain hot spots. This caused tiny amounts of metal to deposit in this spots – just enough to solder nanotube junctions. The  technique is called CVD [chemical vapor deposition] and is currently widely used by most major manufacturing companies. This means that, if they wish it in the future, they can integrate this process with existing technology dramatically cutting the huge costs that are associated with replacing infrastructure.

“Other methods have been developed to address the nanotube junction resistance problem, but they are generally top-down and quite slow,” Lyding said. “Our method is self-aligned and self-limiting and is therefore easily implemented.”

Here’s an illustrated view of the carbon nanotube self-soldering process, which only lasts a few seconds but improves device performance by a whole order of magnitude.

Step 1

 The carbon nanotube array is arranged as horizontal over vertical tubes in a chamber that is filled metal in gaseous form. The tubes' internal resistivity to electron flow causes them to heat more at the junction. (Credit: Joseph W. Lyding/University of Illinois)

The carbon nanotube array is arranged as horizontal over vertical tubes in a chamber that is filled metal in gaseous form. The tubes’ internal resistivity to electron flow causes them to heat more at the junction. (Credit: Joseph W. Lyding/University of Illinois)

Step 2

The gas molecules surrounding the nanotubes react to the heat and depose on the hot spots, soldering the junctions. The resistance then drops, cooling the junction and effectively stopping the reaction. (Credit: Joseph W. Lyding/University of Illinois)

The gas molecules surrounding the nanotubes react to the heat and depose on the hot spots, soldering the junctions. The resistance then drops, cooling the junction and effectively stopping the reaction. (Credit: Joseph W. Lyding/University of Illinois)

Step 3

Finally, this how the  metallized nanotube-nanotube junctions look like.  (Credit: Joseph W. Lyding/University of Illinois)

Finally, this how the metallized nanotube-nanotube junctions look like. (Credit: Joseph W. Lyding/University of Illinois)

The findings were reported in the journal Nano Letters.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.