homehome Home chatchat Notifications


Nano-machines made from DNA look like molecule-size hinges

For the very first time, engineers have used the DNA origami assembly method to build  complex DNA-based mechanism that performs a repeatable and reversible function. Mechanical engineers at The Ohio State University built their devices such that they may function like any regular macro-object, like opening and closing hinges. Their approach, however, is different than other […]

Tibi Puiu
January 7, 2015 @ 1:22 pm

share Share

For the very first time, engineers have used the DNA origami assembly method to build  complex DNA-based mechanism that performs a repeatable and reversible function. Mechanical engineers at The Ohio State University built their devices such that they may function like any regular macro-object, like opening and closing hinges. Their approach, however, is different than other DNA assembly projects which concentrated on mimicking biological systems or static shapes. Such dynamic molecule-sized devices could be used in smart drug delivery or self-assembling tiny transformers-like robots.

DNA origami hinges

DNA hinges

The DNA origami method for making nano-structures has been widely used since 2006, and is now a standard procedure for many labs that are developing future drug delivery systems and electronics. It involves taking long strands of DNA and coaxing them to fold into different shapes, then securing certain parts together with “staples” made from shorter DNA strands. The resulting structure is stable enough to perform a basic task, such as carrying a small amount of medicine inside a container-like DNA structure and opening the container to release it.

[RELATED] Nanorobots made out of DNA seek and kill cancer cells

“Nature has produced incredibly complex molecular machines at the nanoscale, and a major goal of bio-nanotechnology is to reproduce their function synthetically,” saidCarlos Castro, the group project leader and an assistant professor of mechanical and aerospace engineering. “In essence, we are using a bio-molecular system to mimic large-scale engineering systems to achieve the same goal of developing molecular machines.”

A DNA origami piston. Credit:  Ohio State University.

A DNA origami piston. Credit: Ohio State University.

To get their DNA machines to function properly, the engineers designed the flexing parts out of single-stranded DNA, while those regions that were supposed to be stiff were built from snips of double-stranded DNA. In the case of hinges that repeatedly open and close, this also had to perform their operation reversibly, so the engineers attached small strands of synthetic DNA off the side of the main components. Like a hook-and-loop fastener, the strands latch onto each other when the device is closed and release when opened. To control the operations of the machine, researchers make changes to the chemical environment. The machines then respond to this stimuli accordingly.

“DNA origami enables the precise fabrication of nanoscale geometries,” the authors write. “We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements…Our results demonstrate programmable motion of 2-D and 3-D DNA origami mechanisms constructed following a macroscopic machine design approach.”

origami hinge

This approach of designing simple joints and connecting them together to make more complex working systems is common in macroscopic machine design, but this is the first time it’s been done with DNA—and the first time anyone has tuned the DNA to produce reversible actuation of a complex mechanism, as described in a paper published in  Proceedings of the National Academy of Sciences.

“I’m pretty excited by this idea,” Castro said. “I do think we can ultimately build something like a Transformer system, though maybe not quite like in the movies. I think of it more as a nano-machine that can detect signals such as the binding of a biomolecule, process information based on those signals, and then respond accordingly—maybe by generating a force or changing shape.”

 

share Share

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions

The World's Oldest Known Ant Is A 113-Million-Year-Old Hell Ant with Scythe Jaws

A remarkable find for ant history was made, not in the field but in a drawer.

Your Cells Can Hear You — And It Could Be Important for Fat Cells

Researchers explore the curious relationship between sound and gene expression in cell cultures.

Scientists Create a 'Power Bar' for Bees to Replace Pollen and Keep Colonies Alive Without Flowers

Researchers unveil a man-made “Power Bar” that could replace pollen for stressed honey bee colonies.

First-Ever Footage Captures a Living Colossal Squid—And It’s Just a Baby

A century after its discovery, the elusive giant finally reveals itself on camera.

Yeast in Space? Scientists Just Launched a Tiny Lab to See If We Can Create Food in Orbit

Microbes can brew food in space — a game-changer for astronauts.