homehome Home chatchat Notifications


Nanorobots made out of DNA seek and kill cancer cells

In what can only be hailed as a breakthrough in the “smart drugs” field, scientists at Harvard University have successfully managed to create nanorobots made out of strands of DNA, folded together by the DNA origami method. These act like drug-carrying recipients, which specifically target various types of cells and deliver complex molecular instructions – […]

Tibi Puiu
February 16, 2012 @ 3:43 pm

share Share

In what can only be hailed as a breakthrough in the “smart drugs” field, scientists at Harvard University have successfully managed to create nanorobots made out of strands of DNA, folded together by the DNA origami method. These act like drug-carrying recipients, which specifically target various types of cells and deliver complex molecular instructions – like telling cancer cells to self-destruct.

(c) Wyss Institute

(c) Wyss Institute

The shape and structure of the nanobots was critical to their success. The team designed a clam-like device, using DNA modelling software that can compute and complement inputted shapes with the right kinds of DNA strands, of the right helical structure and base pairs, and mix them together.

The DNA clam acts as a container and only opens when it finds its target. To keep its payload unscathed, made out specific molecules with encoded instructions for certain cell surface receptors with which it interacts, the clam is fitted with two locks. Each lock is made out of a DNA strand called an aptamer, specifically designed to recognize a certain molecule. Only when it nears the target, will the aptamer unzip, swinging the claim open, and delivering the payload in the process.

The scientists involved in research were Shawn Douglas, Ph.D., a Wyss Technology Development (Harvard University) Fellow, and Ido Bachelet, Ph.D., a former Wyss Postdoctoral Fellow who is now an Assistant Professor in the Faculty of Life Sciences and the Nano-Center at Bar-Ilan University in Israel.

To demo their creation, Douglas and Bachelet encoded antibody fragments with self-termination instructions for two types of cancer cells – leukemia and lymphoma. Since the two cancer cells communicate differently, they require specific instructions of their own, so the researchers were sure to have the messages written in different antibody combinations.

Smart DNA robots –  miracle drugs of the future?

The nanorobot for leukemia had its locks open in response to molecules expressed on the cancer cells surface, and was loaded with a single molecules which kills cells by disrupting their growth cycles. Millions of such bots were released into a mixture of both healthy and cancerous human blood cells. Only three days afterwards, half of all the cancer cells were destroyed, while absolutely no healthy cells were affected at all. The researchers claim  had they increased the number of payloads into the system, then every leukemia cell would’ve been cleansed.

What’s important to note about this particular system, whose design was heavily influenced by our own natural immune system, is that the active molecules designed to attack a specific cell can be harbored into containers featuring two types of locks. Just like the body’s immune system, the DNA origami nanobots will thus be able to hone in on specific cells in distress, bind to them, and transmit comprehensible signals to them to self-destruct. “It would require that two different signals have to be present to open it, increasing its specificity,” says Douglas.

“This work represents a major breakthrough in the field of nanobiotechnology as it demonstrates the ability to leverage recent advances in the field of DNA origami pioneered by researchers around the world, including the Wyss Institute’s own William Shih, to meet a real-world challenge, namely killing cancer cells with high specificity,” said Wyss Institute Founding Director, Donald Ingber, M.D., Ph.D. “This focus on 9translating technologies from the laboratory into transformative products and therapies is what the Wyss Institute is all about.”

By all standards, this can only be considered a remarkable research, with potentially incredible consequences in medicine. Thoughts, please?

source

share Share

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

We Know Sugar Is Bad for Your Teeth. What About Artificial Sweeteners?

You’ve heard it a thousand times: sugar is terrible for your teeth. It really is. But are artificial sweeteners actually any better? The short answer? Yes—artificial sweeteners don’t feed the bacteria that cause cavities. But here’s the twist: many of the sugar-free products they’re used in can still damage your teeth in a different way—through […]

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

Tooth loss is linked to cognitive decline, study in India shows

The connection between tooth loss and cognitive decline may surprise you.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions