homehome Home chatchat Notifications


Artificial cell can move on its own

In an attempt to further out understanding of cell deformation and mechanics, researchers at the Technische Universität München (TUM) have built an artificial cellular model that can change its shape and move on its own. Cells are complex biological objects that exhibit sophisticated metabolic functions. Primordial cells, however, were much simpler in design: just a […]

Tibi Puiu
September 8, 2014 @ 8:15 am

share Share

This isn't a child-like animation, but real, genuine footage of an artificial cell moving under a microscope. Image: gif created for video produced by TUM.

This isn’t a child-like animation, but real, genuine footage of an artificial cell moving under a microscope. Image: gif created for video produced by TUM.

In an attempt to further out understanding of cell deformation and mechanics, researchers at the Technische Universität München (TUM) have built an artificial cellular model that can change its shape and move on its own.

Cells are complex biological objects that exhibit sophisticated metabolic functions. Primordial cells, however, were much simpler in design: just a membrane and a couple of molecules. Mimicking this simple, minimalist design, German researchers built a cell-like model with a biomechanical function that allows it to move and change its shape without external influence.

Credit: TUM

Credit: TUM

The model is made of a membrane shell, two different kinds of biomolecules and, of course, a fuel. The envelope, which in a biological cell corresponds to the vesicle, is made of a double-layered lipid membrane, just like in a natural cell. The membrane was filled with microtubules, like those made by cellular cytoskeletons and kinesins. These tiny proteins act like motors and move objects along the cytoskeletons of real cells. During experiments, these motors constantly push tubules alongside each other sparking movement. The kinetic energy is fueled by adenosine triphosphate (ATP).

credit: TUM

credit: TUM

From a physical perspective, the microtubules form a two-dimensional liquid crystal under the membrane, which is in a permanent state of motion.

“One can picture the liquid crystal layer as tree logs drifting on the surface of a lake,” explains Felix Keber, lead author of the study. “When it becomes too congested, they line up in parallel but can still drift alongside each other.”

“With our synthetic biomolecular model we have created a novel option for developing minimal cell models,” explains TUM-Prof. Andreas Bausch. “It is ideally suited to increasing the complexity in a modular fashion in order to reconstruct cellular processes like cell migration or cell division in a controlled manner. That the artificially created system can be comprehensively described from a physical perspective gives us hope that in the next steps we will also be able to uncover the basic principles behind the manifold cell deformations.”

Findings appeared in the journal Science.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.