homehome Home chatchat Notifications


Astronomers upset the theory of planetary formation

The discovery of 9 new planets raises some serious questions on the matter of how planets are formed. Two astronomers from the University of California, Santa Barbara reported the discovery, and of them, two are spinning in the opposite direction the planets in our solar system are spinning. This, along with other recent studies of […]

Mihai Andrei
April 14, 2010 @ 12:41 pm

share Share

The discovery of 9 new planets raises some serious questions on the matter of how planets are formed. Two astronomers from the University of California, Santa Barbara reported the discovery, and of them, two are spinning in the opposite direction the planets in our solar system are spinning. This, along with other recent studies of exoplanets (planets outside the solar system) seems to put the final nail in the primary theory regarding planetary formation.

hot-jupiter-4

Artistic illustration of a Hot Jupiter

This was the highlight at the UK National Astronomy Meeting in Glasgow, Scotland that took place this week, and now researchers from this field will have a whole lot of work to do, basically starting from scratch (almost).

“Planet evolution theorists now have to explain how so many planets came to be orbiting like this,” said Tim Lister, a project scientist at LCOGT. Lister leads a major part of the observational campaigns along with Rachel Street of LCOGT, Andrew Cameron of the University of St. Andrews in Scotland, and Didier Queloz, of the Geneva Observatory in Switzerland.

The 9 planets are pretty interesting by themselves too; they are so-called “Hot Jupiters”. As you could guess by the name, they are giant gas planets that orbit quite close to their star (which is of course why they’re hot). Since this type of planet was discovered no more than 15 years ago, their origin has remained a mystery. However, they are quite easy to detect due to the gravitational effect they have on their star.

The general belief is that at their cores, these planets have a mix of rock and ice particles found only in the cold outer reaches of planetary systems. The logical conclusion is that Hot Jupiters have to form quite far away from their star and then migrate closer as millions of years pass. Numerous astronomers believed this happens due to the interactions the planets have with the dust cloud from which they are formed. However, this idea does not explain why they orbit in a direction contrary to that of the disk.

Another theory suggests that it was not interaction with the disk at all, but rather a slower evolution that was affected by gravitational relationships with more distant planetary or stellar companions over hundreds of millions of years. It would probably be imposed an elongated orbit and would suffer have a “tidal” movement, until it was parked in a more circular orbit close to the star.

“In this scenario, smaller planets in orbits similar to Earth’s are unlikely to survive,” said Rachel Street.

share Share

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Giant solar panels in space could deliver power to Earth around the clock by 2050

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

Bright, polarized, and unseen in any other light — Punctum challenges astrophysical norms.

How Much Has Mercury Shrunk?

Mercury is still shrinking as it cools in the aftermath of its formation; new research narrows down estimates of just how much it has contracted.