homehome Home chatchat Notifications


Astronomers discover intriguing exoplanet with possible water vapor atmosphere

The James Webb comes through again.

Jordan Strickler
May 4, 2023 @ 12:31 am

share Share

Artist’s concept of GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. (Credit: NASA, ESA, CSA, Joseph Olmsted [STScI])

Astronomers using NASA’s James Webb Space Telescope have made an intriguing discovery about a rocky exoplanet known as GJ 486 b, 26 light-years away in the constellation Virgo.

The planet is too close to its star to be in the habitable zone, with a surface temperature of about 800 degrees Fahrenheit (430 degrees Celsius). Despite this, observations using Webb’s Near-Infrared Spectrograph (NIRSpec) show hints of water vapor.

If the water vapor is associated with the planet, it could indicate that the planet has an atmosphere despite its scorching temperature and close proximity to its star, a red dwarf.

“We see a signal, and it’s almost certainly due to water,” said the study lead author Sarah Moran of the University of Arizona in Tucson. “But we can’t tell yet if that water is part of the planet’s atmosphere, meaning the planet has an atmosphere, or if we’re just seeing a water signature coming from the star.”

A wet exoplanet

Red dwarf stars are the most common stars, and rocky exoplanets are most likely to be found orbiting such a star. These stars are cool, meaning that a planet has to hug its parent star in a tight orbit to stay warm enough to potentially host liquid water in the habitable zone.

However, red dwarf stars are also active, particularly when they are young, releasing ultraviolet and X-ray radiation that could destroy planetary atmospheres. This has raised the important question in astronomy of whether a rocky planet could maintain, or reestablish, an atmosphere in such a harsh environment.

“Water vapor in an atmosphere on a hot rocky planet would represent a major breakthrough for exoplanet science. But we must be careful and make sure that the star is not the culprit,” said Kevin Stevenson of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, principal investigator on the program.

GJ 486 b is about 30% larger than Earth and three times as massive, which means it is a rocky world with stronger gravity than here on our planet. It orbits a red dwarf star in just under 1.5 Earth days. It is expected to be tidally locked, with permanent day and night sides, akin to the Moon.

The planet transits its star, crossing right in front of it from our point of view. If it has an atmosphere, then when it transits starlight would filter through those gasses, imprinting fingerprints in the light that allow astronomers to decode its composition through a technique called transmission spectroscopy.

The team observed two transits, each lasting about an hour. They then utilized three different methods to analyze the resulting data.

The results from all three are consistent in that they show a mostly flat spectrum with an intriguing rise at the shortest infrared wavelengths.

The team also ran computer models considering several different molecules, concluding that the signal’s most likely source was water vapor.

This could indicate the presence of an atmosphere on GJ 486 b, but an equally plausible explanation is water vapor from the star. Surprisingly, even in our own Sun, water vapor can sometimes exist in sunspots because these spots are very cool compared to the surrounding surface of the star.

GJ 486 b’s host star is much cooler than the Sun, so even more water vapor would concentrate within its starspots. As a result, it could create a signal that mimics a planetary atmosphere.

“We didn’t observe evidence of the planet crossing any starspots during the transits,” said one of the study’s co-authors, Ryan MacDonald of the University of Michigan in Ann Arbor. “But that doesn’t mean that there aren’t spots elsewhere on the star. And that’s exactly the physical scenario that would imprint this water signal into the data and could wind up looking like a planetary atmosphere.”

Due to the star’s heat and radiation, the presence of a water vapor atmosphere is likely to gradually erode. Therefore, it is likely that any atmosphere would need to be continuously refilled by steam released from the planet’s interior by volcanic activity. If water is found in the atmosphere, more observations are required to estimate its concentration.

The Webb telescope could eventually offer more information about this system. Particularly, the future Webb program will observe the planet’s dayside using the Mid-Infrared Instrument (MIRI).

The hottest spot on the day side is anticipated to be directly beneath the star if the planet has a thin or nonexistent atmosphere. However, if this point were to shift, it would denote the presence of a warm atmosphere.

In the end, observations at shorter infrared wavelengths by the Near-Infrared Imager and Slitless Spectrograph (NIRISS), a different Webb instrument, will be required to distinguish between the planetary atmosphere and starspot scenarios.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.