homehome Home chatchat Notifications


Mars' Arsia Mons and the dinosaurs went extinct at the same time. Coincidence?! Definitely

#sync.

Alexandru Micu
April 3, 2017 @ 5:21 pm

share Share

Here’s a brain teaser: what do the dinosaurs and this giant volcano on Mars have in common? Well, according to NASA research, they may have gone extinct at about the same time.

A digital-image mosaic of Mars’ Tharsis plateau showing Arsia Mons.
Image credits NASA / JPL.

A tad south of Mars’ equator, there’s a rough triangle of wide, softly sloped volcanoes collectively known as the Tharsis Montes. Its southernmost member is named Arsia Mons and, just like its two counterparts, was build by billions of years of lazy lava flows adding on top of one another. We don’t yet have all the details of how its lifecycle looked like, but now we do know when it likely ended — and it’s about the same time as the dinosaurs did.

Gone with the dinosaurs

In its heyday, Arsia Mons spewed out a new lava flow about once every 1 to 3 million years. The last big bout of its activity likely took place in the caldera (the bowl-shaped depression at the top), where scientists found 29 distinct volcanic vents, somewhere around 50 million years ago. This would coincide roughly with the Cretaceous-Paleogene extinction event, which killed off most of the species on Earth at the time, including the dinosaurs.

The caldera itself is a huge thing, measuring some 68 miles (110 kilometers) across. The researchers used high-resolution imaging taken with the Context Camera on the Mars Reconnaissance Orbiter to map the vents and boundaries between successive lava flows in the caldera, and used crater counting to estimate their age. Then they used a computer model developed by Jacob Richardson, a postdoctoral researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and his colleagues from the University of South Florida to determine the order in which each of the 29 vents formed.

The team found that the oldest flows date back to about 200 million years and the youngest between 10 or 90 million years ago. During the peak volcanic activity, they produced collectively produced an estimated 1 to 8 cubic kilometers of magma every million years, adding to the volcano’s height and size.

Arsia Mons.

And it grew pretty big.
Image credits Martin Pauer.

“It’s possible, though, that the last volcanic vent or two might have been active in the past 50 million years, which is very recent in geological terms,” Richardson said.

“Think of it like a slow, leaky faucet of magma. Arsia Mons was creating about one volcanic vent every 1 to 3 million years at the peak, compared to one every 10,000 years or so in similar regions on Earth.”

Understanding Mars’ volcanic activity would allow scientists to peer into the planet’s history and geological structure. A major step towards that goal is to understand the anatomy and lifecycle of these volcanoes, which are dictated by Mars’ internal characteristics and geological processes. And seeing how they behaved on Mars might also help us better understand the volcanoes down on our own planet.

“Mars’ volcanoes show evidence for activity over a larger time span than those on Earth, but their histories of magma production might be quite different,” said Jacob Bleacher, a planetary geologist at Goddard and a co-author on the study.

“This study gives us another clue about how activity at Arsia Mons tailed off and the huge volcano became quiet.”

 

Richardson will be presenting the findings on March 20, 2017, at the Lunar and Planetary Science Conference in The Woodlands, Texas. The study titled “Recurrence rate and magma effusion rate for the latest volcanism on Arsia Mons, Mars” has been published in the journal Earth and Planetary Science Letters.

share Share

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

This nimble dinosaur may have sparked the evolution of one of the deadliest predators on Earth.

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

People still make the funniest memes but AI is catching up fast.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.