homehome Home chatchat Notifications


Antibiotic-destroying genes are widespread in bacteria found in soil and humans

It's a public health crisis waiting to happen.

Mihai Andrei
May 4, 2022 @ 7:40 pm

share Share

The world is now understandably distracted with COVID-19, but we’re also locked in long-lasting arms with countless pathogens. For the longest time, we were almost defenseless, but then antibiotics came about and changed everything.

Suddenly, a horde of different pathogens could be kept at bay with relative ease, and mankind breathed a collective sigh of relief. But as the decades passed, it became clear that this wasn’t the end of the story.

Now, even as a new generation of tetracycline antibiotics has come about, a surprisingly large number of pathogens seem to be able to resist the antibiotics with ease.

Drug-resistant genes were found on bacteria in soil and on our bodies. Image credits: Markus Spiske.

Tetracyclines in general have a broad spectrum of activity. They have been used to treat a wide array of conditions, including acne, cholera, brucellosis, plague, malaria, and syphilis. Initially, they possessed some level of bacteriostatic activity against almost all medically relevant bacteria. But as time passed, an increasing number of bacteria acquired some level of resistance, eroding the versatility of the drug.

The latest generation of tetracyclines (a class of powerful, first-line antibiotics) was designed to thwart the two most common ways bacteria resist such drugs.

But things aren’t going all that well.

In 2015, Gautam Dantas, Professor of Pathology and Immunology and of molecular microbiology at Washington University School of Medicine in St. Louis, discovered that some bacteria have genes that enable them to render the antibiotic harmless. These bacterial genes simply slice the toxic component of the antibiotic and deal with it with no problem. But they didn’t know how common these genes were.

So, in a new study, Dantas and colleagues wanted to see just how widespread these genes are in bacteria that live in soil and in people.

The bottom line? They’re pretty widespread.

“We first found tetracycline-destroying genes five years ago in harmless environmental bacteria, and we said at the time that there was a risk the genes could get into bacteria that cause disease, leading to infections that would be very difficult to treat,” said Dantas, Ph.D. “Once we started looking for these genes in clinical samples, we found them immediately. The fact that we were able to find them so rapidly tells me that these genes are more widespread than we thought. It’s no longer a theoretical risk that this will be a problem in the clinic. It’s already a problem.”

The researchers also cloned some of these genes into E. coli bacteria that had no resistance to tetracyclines and tested the modified bacteria to see whether they developed resistance — they did.

Two different 3D views of TetX7 (green), a tetracycline-destroying enzyme that causes resistance to all tetracycline antibiotics (the small multicolored molecule in the center). Researchers at Washington University in St. Louis and the National Institutes of Health (NIH) have found that genes that confer the power to destroy tetracyclines are widespread in bacteria that live in the soil and on people. Credit: Timothy Wencewicz

To make things even more concerning, not only was this new E. coli very effective in withstanding tetracyclines, but it was also able to survive a broad range of these antibiotics. Usually, there’s a trade-off between how broad an enzyme is and how efficient it is, says Timothy Wencewicz, co-author of the study. But this does not seem to be the case here — the genes offer the best of both worlds.

Tetracyclines have been around since the 1940s, and they are one of the cornerstone antibiotics we use. If resistance to this class becomes widespread, it could be a disaster for public health.

Ultimately, this means that sooner or later, pathogens are likely to develop resistance to our antibiotics. We need to prepare for that event, either by developing new antibiotics (which has proven extremely challenging), or by finding new ways to bypass the pathogens’ defenses.

Otherwise, we’re just waiting for a public health crisis to happen.

“Antibiotic resistance is going to happen. We need to get ahead of it and design inhibitors now to protect our antibiotics, because if we wait until it becomes a crisis, it’s too late,” said Wencewicz.

Journal Reference: Andrew J. Gasparrini et al. “Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance”, Communications Biology (2020). DOI: 10.1038/s42003-020-0966-5

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths