homehome Home chatchat Notifications


New class of actuators gives nanobots legs (that work)

Now we're going places!

Alexandru Micu
August 26, 2020 @ 6:04 pm

share Share

A new paper brings us one step closer to creating swarms of tiny, mobile robots.

Artist’s rendition of an array of microscopic robots.
Image credits Criss Hohmann.

Science fiction has long foretold of sprawling masses of tiny robots performing tasks from manufacturing and medicine to combat — with the most extreme example being the Grey Goo. We’re nowhere near that point, yet, but we’re making progress.

A new paper describes the development of a novel class of actuators (devices that can generate motion) that is comparable with current electronics. These actuators are tiny and bend when stimulated with a laser, making them ideal to power extremely small robots. A lack of proper means of movement has been a severe limitation on our efforts to design very small robots so far, the team explains.

Finding their legs

“What this work shows is proof of concept: we can integrate electronics on a [tiny] robot. The next question is what electronics should you build. How can we make them programmable? What can they sense? How do we incorporate feedback or on-board timing?” lead author Marc Miskin, assistant professor of electrical and systems engineering at the University of Pennsylvania, told me in an email.

“The good news is semiconductor electronics gives us a lot of developed technology for free. We’re working now to put those pieces together to build our next generation of microscopic robots.

Actuators are the rough equivalent of engines. Although they rarely use the same principles, they’re both meant to do physical work (a motion that can be used to perform a certain task). The lack of an adequate actuator, both in regards to size and compatibility with our current electronics, has hampered advances into teeny-tiny robots.

Marc and his team hope to finally offer a solution to this problem. The actuators they developed are small enough to power the legs of robots under 0.1 mm in size (that’s about the size of a strand of human hair). The devices are compatible with silicon-based circuitry, so no special adaptations are needed to work with them in most settings.

These actuators bend in response to a laser pulse to create a walking motion; power, in this case, was supplied by onboard photovoltaics (solar panels). As for the sizes involved here: the team reports that they can fit over one million of their robots on a 4-inch wafer of silicon.

Given that the proof-of-concept robots are surprisingly robust, very resistant to acidity, and small enough to go through a hypodermic (syringe) needle, one particularly exciting possibility is to use them for medical applications or simple biomonitoring in human and animal patients — just like in the movies. I’ve asked Marc what other potential applications they’re excited for, and the possibilities do indeed seem endless:

“We’re thinking about applications in manufacturing (can you use them to form or shape materials at the microscale?), repairing materials (can you fix defects to increase material lifespan?), and using them as mobile sensors (can you send robots into say cracks in a rock or deep in a chemical reactor to make measurements and bring data back).”

However, he’s under no illusions that this will be an easy journey. “These are of course long term goals: right now all our robots can do is walk,” he notes.

Technology and know-how, however, have a way of compounding once released into ‘the wild’ of our economies. The advent of appropriate actuators might just be the nudge needed to walk us into a series of rapid improvements on nanomachines. And I, for one, couldn’t be more excited.

The paper “Electronically integrated, mass-manufactured, microscopic robots” has been published in the journal Nature.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.