homehome Home chatchat Notifications


Ultra-white beetle could inspire next generation of paper and paints

The physical properties of the ultra-white scales on certain species of beetle could inspire researchers to make better, whiter paper, plastics or paint, using far less material. The Cyphochilus beetle, native to South-East Asia, is whiter than paper or even milk teeth. The whiteness of its body is caused by a thin layer of a highly […]

Mihai Andrei
August 25, 2014 @ 2:53 am

share Share

The physical properties of the ultra-white scales on certain species of beetle could inspire researchers to make better, whiter paper, plastics or paint, using far less material.

Image via Cambridge University.

The Cyphochilus beetle, native to South-East Asia, is whiter than paper or even milk teeth. The whiteness of its body is caused by a thin layer of a highly reflective natural photonic solid in its scales. A new team investigation the beetle and its scales found that the white scales are able to scatter light more efficiently than any other known biological mechanism, which is how they are able to achieve such a whiteness.

In nature, there are several animals which are very white; they have this color for varying purposes, such as camouflage, communication or thermo-regulation (in very hot areas). However, being white is a rather complicated thing – you have to reflect all wavelengths of light with the same efficiency. The ultra-white Cyphochilus beetle does this through a dense, complicated network of chitin – a molecule similar in structure to cellulose commonly found in nature in the shells of mollusks, on the exoskeletons of many insects and in the cell wall of fungi.

“These scales have a structure that is truly complex since it gives rise to something that is more than the sum of its parts,” said co-author Dr Matteo Burresi of the Italian National Institute of Optics in Florence. “Our simulations show that a randomly packed collection of its constituent elements by itself is not sufficient to achieve the degree of brightness that we observe.”

Chitin is not very good at reflecting light itself, but over millions of years of evolution, the beetles have developed a complex network with extremely thin chitin filaments. It’s important for insects, especially flying insects, to be very light, so the chitin network has to be very efficient and light, like a painter who needs to whiten a wall with a very small quantity of paint. 

“Current technology is not able to produce a coating as white as these beetles can in such a thin layer,” said Dr Silvia Vignolini of the University’s Cavendish Laboratory, who led the research. “In order to survive, these beetles need to optimise their optical response but this comes with the strong constraint of using as little material as possible in order to save energy and to keep the scales light enough in order to fly. Curiously, these beetles succeed in this task using chitin, which has a relatively low refractive index.”

The exact mechanism through which they evolved this way still remains unknown – but that doesn’t mean that we can’t inspire technology from it. In recent times, many engineers have turned to nature for inspiration, with great results.

“The lessons we are learning from these beetles is two-fold,” said Dr Vignolini. “On one hand, we now know how to look to improve scattering strength of a given structure by varying its geometry. On the other hand the use of strongly scattering materials, such as the particles commonly used for white paint, is not mandatory to achieve an ultra-white coating.”

The results of this study could have a myriad of applications, most notably enabling white materials such as paper, plastics, paints, as well as white-light reflectors inside new-generation displays to be made whiter more efficiently with less material.

Journal Reference: Matteo Burresi,Lorenzo Cortese,Lorenzo Pattelli,Mathias Kolle,Peter Vukusic,Diederik S. Wiersma,Ullrich Steiner& Silvia Vignolini. Bright-White Beetle Scales Optimise Multiple Scattering of Light. Scientific Reports 4, Article number: 6075 doi:10.1038/srep06075

share Share

New DNA Evidence Reveals What Actually Killed Napoleon’s Grand Army in 1812

Napoleon's army was the largest Europe had ever seen, but in just a few months it was obliterated.

Breathing This Common Air Pollution May Raise Your Dementia Risk by 17 Percent

Long-term exposure to common air pollutants like soot and traffic fumes may significantly raise your risk of dementia.

This mRNA HIV Vaccine Produces the Virus-Fighting Antibodies That Have Eluded Researchers for 40 Years

New mRNA-based HIV vaccines spark hope with potent immune responses in first human trial

Aging Might Travel Through Your Blood and This Protein Is Behind It

Researchers identify a molecular “messenger” that spreads cellular aging between organs.

Older Adults Keep Their Brains up to Two Years 'Younger' Thanks to This Cognitive Health Program

Structured programs showed greater cognitive gains, but even modest lifestyle changes helped.

Ancient Human Ancestors Showed Extreme Size Differences Between Males and Females

Early human ancestors may have lived in societies more combative than anything today.

Anthropic says it's "vaccinating" its AI with evil data to make it less evil

The Black Mirror episodes are writing themselves now.

Optimists Are All the Same; Pessimists Are All Different

Researchers found the brain activity of optimists looked strikingly similar to that of other optimists.

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

MIT experiment shows even minimal disturbance erases light’s wave pattern, proving Einstein wrong

Ohio Couple Welcomes World's “Oldest Baby” From 30-Year-Old Frozen Embryo

A record-breaking birth brings new questions about the limits of life in cold storage