homehome Home chatchat Notifications


Quantum materials may replace silicon in transistor construction

In today’s world, silicon has few materials which actually contest its status as the king of electronics. However, that may change in the not so distant future. A group of Harvard researchers have used a quantum material called correlated oxide to make better, more efficient transistors. The strategy for building better and more advanced processors is […]

Henry Conrad
September 18, 2014 @ 6:48 am

share Share

In today’s world, silicon has few materials which actually contest its status as the king of electronics. However, that may change in the not so distant future. A group of Harvard researchers have used a quantum material called correlated oxide to make better, more efficient transistors.

Transistors and quantum materials.

A common transistor. Wiki Commons.

The strategy for building better and more advanced processors is pretty simple – even rudimentary: just cram in as many transistors and circuits as possible into smaller and smaller surfaces. But sooner or later, this approach will meet its limit – there’s only so many things you can put in a limited space. Also, when you get to a small enough scale, strange quantum effects start to happen, interfering with the processing. This is why we already have to start thinking about what materials will replace and improve silicon – and this is where this study steps in.

The results (which the team describes as “colossal”) emerged in a very unlikely place – a laboratory usually designed to studying fuel cells—the kind that run on methane or hydrogen.

“Traditional silicon transistors have fundamental scaling limitations,” saysAssociate Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS). “If you shrink them beyond a certain minimum feature size, they don’t quite behave as they should.”

However, for all their limitations, silicon transistors are very efficient – with an on/off ratio of at least 104 required for practical use.

“It’s a pretty high bar to cross,” Ramanathan explains, adding that until now, experiments using correlated oxides have produced changes of only about a factor of 10, or 100 at most, near room temperature.

But their results are better than that – better than many transistors used today too. Their on/off ratio was 105, competing with the best today’s silicon has to offer.

“Our orbital transistor could really push the frontiers of this field and say, you know what? This is a material that can challenge silicon,” Ramanathan says.

Using correlated oxides is not a novel idea – they have been studied for intensively for a few years, but the field is still in its infancy. Correlated oxides are quantum materials – this means that quantum-mechanical interactions have a dominant influence over the material properties, not only at a small scale, but also at a large scale.

“If you have two electrons in adjacent orbitals, and the orbitals are not completely filled, in a traditional material the electrons can move from one orbital to another. But in the correlated oxides, the electrons repulse each other so much that they cannot move,” Ramanathan explains. “The occupancy of the orbitals and the ability of electrons to move in the crystal are very closely tied together—or ‘correlated.’ Fundamentally, that’s what dictates whether the material behaves as an insulator or a metal.”

They are among a select group of alternatives for silicone transistors, including biological transistors, graphene transistors, or even single atom transistors.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.