homehome Home chatchat Notifications


Time for the prosthetic skin: granting touch where its been lost

Brain-computer interfaces have helped prosthetics go a long, long way. ZME Science showed you a couple of such examples, like the case of a mechanical arm remotely controlled by a man using only using thoughts or the mind-blowing high-tech prosthetic by DARPA that empowered a veteran who had lost him limb to perform all sorts of […]

Tibi Puiu
December 11, 2014 @ 12:04 pm

share Share

Brain-computer interfaces have helped prosthetics go a long, long way. ZME Science showed you a couple of such examples, like the case of a mechanical arm remotely controlled by a man using only using thoughts or the mind-blowing high-tech prosthetic by DARPA that empowered a veteran who had lost him limb to perform all sorts of complex tasks previously unimaginable for a prosthetic. The trend is to develop mechanical replacements that mimic the real limb as closely as possible, however, beyond their practical use our limbs are important for another important reason – sensing. South Korean researchers are at the very frontline of this line of research; they report a smart prosthetic skin instrumented with ultrathin, single crystalline ​silicon nanoribbon (SiNR) strain, pressure and temperature sensor arrays. This artificial skin can be stretched across a whole prosthetic and might one day complete the whole array of needs a prosthetic must meet: practicality, aestheticism and sensation.

Prosthetic touch

smart-skin

Credit: Seoul National University

In the paper’s abstract, the Seoul National University team acknowledges that while significant progress has been made  “understanding the neural circuits underlying mechanical and thermal sensation, replicating these capabilities in artificial skin and prosthetics remains challenging.” For instance, ZME Science reported last year how another team, this time from the University of Chicago in the US,  demonstrated a viable prosthetic that relays back sensory input in real time. This way, if you instruct the prosthetic arm to squish a ball with your thoughts, you also get a signal back from the arm to the brain so that you know if you need to keep squeezing or loosen. It’s a fantastic display of feedback. Like the system developed by the Americans, the South Korean smart skin also relies on highly sensitive sensors.

[ALSO SEE] Learning how to use brain-computer interfaces is as easy as waving a hand

After much careful planning, the sensor array was designed to have geometries that will allow it to stretch. This way, the whole array can be easily stretched and people might feel both humidity and temperature where the sensor comes into contact with matter, be it air or some surface like a hot plate. This ‘sensation’ is then transmitted from the sensor to the body through ultrathin stretchable nanowire-based electrodes.

smart-skin2

Credit: Seoul National University

The researchers also recognize that our tactile or haptic abilities aren’t the same throughout the surface of the skin. The skin is more sensitive in some parts than others, like the fingertips and lips since these areas have more receptor cells. As such, the team is considering  “location specific optimization of sensors and actuators in artificial skin and prosthetics”.

Ultimately, though, the skin needs to relay sensitivity to prosthetic’s user. This is also the most challenging part.  To achieve this goal, the signals captured across various sensor arrays must be processed and transmitted to stimulate the corresponding peripheral nervous system. For this to work, the charge delivered to the nerves must be delivered from low impedance in the multi-electrode array. There are also quite a few mechanical and biological challenges. The skin is subjected to tremendous amounts of strain and other mechanical motions. The smart skin needs to preserve mechanically conformal contacts and prevent scar formation arisen from mechenical mistmatch between the biological tissues and the electrode arrays.

The stretchable was described in the journal Nature.

share Share

China Now Uses 80% Artificial Sand. Here's Why That's A Bigger Deal Than It Sounds

No need to disturb water bodies for sand. We can manufacture it using rocks or mining waste — China is already doing it.

Over 2,250 Environmental Defenders Have Been Killed or Disappeared in the Last 12 Years

The latest tally from Global Witness is a grim ledger. In 2024, at least 146 people were killed or disappeared while defending land, water and forests. That brings the total to at least 2,253 deaths and disappearances since 2012, a steady toll that turns local acts of stewardship into mortal hazards. The organization’s report reads less like […]

After Charlie Kirk’s Murder, Americans Are Asking If Civil Discourse Is Even Possible Anymore

Trying to change someone’s mind can seem futile. But there are approaches to political discourse that still matter, even if they don’t instantly win someone over.

Climate Change May Have Killed More Than 16,000 People in Europe This Summer

Researchers warn that preventable heat-related deaths will continue to rise with continued fossil fuel emissions.

New research shows how Trump uses "strategic victimhood" to justify his politics

How victimhood rhetoric helped Donald Trump justify a sweeping global trade war

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.