homehome Home chatchat Notifications


Brain-computer interfaces are as easy to learn and use as waving a hand

Mind-controlled devices, also known as brain-computer interfaces, have evolved a lot in the past few years alone, offering countless people who are paralyzed or missing limbs the chance of living a normal life. Non-afflicted individuals may profit from brain-computer interfaces as well, either for fun (why bother with gamepads or even Kinect when you can […]

Tibi Puiu
June 12, 2013 @ 6:47 am

share Share

Mind-controlled devices, also known as brain-computer interfaces, have evolved a lot in the past few years alone, offering countless people who are paralyzed or missing limbs the chance of living a normal life. Non-afflicted individuals may profit from brain-computer interfaces as well, either for fun (why bother with gamepads or even Kinect when you can control everything in a video game just by thinking about it?) or other applications (we’ve written a while ago about a military project in which soldiers could control an avatar robot with their thoughts; crazy stuff!). Just how easy is using these interfaces though?

This image shows the changes that took place in the brain for all patients participating in the study using a brain-computer interface. Changes in activity were distributed widely throughout the brain. (c) Jeremiah Wander, UW

This image shows the changes that took place in the brain for all patients participating in the study using a brain-computer interface. Changes in activity were distributed widely throughout the brain. (c) Jeremiah Wander, UW

A study recently conducted by scientists at University of Washington analyzed the brain activity of seven people with severe epilepsy, which had their skulls drilled and fitted with thin sheets of electrodes directly onto their brains. This served a double purpose: physicians could scan for epilepsy signals, while a bioengineering team studied which parts of the brain were used as the patients learned to move a cursor using their thoughts alone. The findings took everyone by surprise.

Electrodes on their brains picked up the signals directing the cursor to move, sending them to an amplifier and then a laptop to be analyzed. Within 40 milliseconds, the computer calculated the intentions transmitted through the signal and updated the movement of the cursor on the screen. Apparently, when the brain uses interface technology it behaves much like it does when completing simple motor skills such as kicking a ball, typing or waving a hand. What’s most impressive is that it only takes 10 minutes for this automation to kick in, after the researchers observed activity went from being centered on the prefrontal cortex, which is associated with learning new skills, to areas seen during more automatic functions.

“What we’re seeing is that practice makes perfect with these tasks,” Rajesh Rao, a UW professor of computer science and engineering and a senior researcher involved in the study, said in a school news release. “There’s a lot of engagement of the brain’s cognitive resources at the very beginning, but as you get better at the task, those resources aren’t needed anymore and the brain is freed up.”

This is the first study that clearly maps the neurological signals throughout the brain.

“We now have a larger-scale view of what’s happening in the brain of a subject as he or she is learning a task,” Rao said. “The surprising result is that even though only a very localized population of cells is used in the brain-computer interface, the brain recruits many other areas that aren’t directly involved to get the job done.”

Brain-computer interfaces are definitely getting traction, but let’s face it, the technological limitations are rather cumbersome. For one, the procedure is extremely invasive, as in extreme! You need your skull drilled, and have electrodes implanted, for the interface to become effective. Sure, we’ve seen some work perform pretty well using only electrodes temporarily attached to the scalp, but the signal processing is too weak for the interface to become reliable, especially for those in need of smart prosthetic. Now, armed with a better understanding of how the brain reacts, scientists might come up with solutions that don’t entail drilling holes through skulls.

“This is one push as to how we can improve the devices and make them more useful to people,” said Jeremiah Wander, a doctoral student in bioengineering. “If we have an understanding of how someone learns to use these devices, we can build them to respond accordingly.”

The findings were reported in a paper published in the journal PNAS.

share Share

This Study Finds a Chilling Link Between Personality Type and Trump Support

Malevolent traits and reduced empathy go hand in hand.

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

Some researchers believe that ultraweak photon emissions could be used to interpret brain activity.

If You’re Nostalgic for a Place, It’s Probably Somewhere Near Water

There's just something about the sea.

Fasting Before Bed Could Supercharge Your Brain’s Memory System While You Sleep

Skipping dinner might be a weird but effective way to boost your memory.

Golden Oyster Mushroom Are Invasive in the US. They're Now Wreaking Havoc in Forests

Golden oyster mushrooms, with their sunny yellow caps and nutty flavor, have become wildly popular for being healthy, delicious and easy to grow at home from mushroom kits. But this food craze has also unleashed an invasive species into the wild, and new research shows it’s pushing out native fungi. In a study we believe […]

How Handing Smartphones to Kids Before They Turn 13 May Damage Their Mental Health for Life

The earlier kids get phones, the worse their mental health looks by adulthood.

The World’s Most "Useless" Inventions (That Are Actually Pretty Useful)

Every year, the Ig Nobel Prize is awarded to ten lucky winners. To qualify, you need to publish research in a peer-reviewed journal that is considered "improbable": studies that make people laugh and think at the same time.

Who’s Really in Charge? By 12 Months Old, Your Baby Is Already Guiding You

A new study in eLife reveals a surprising twist in infant attention research. By 12 months old, infants do not simply respond to caregivers: they often drive attention themselves, using brain-based rhythms. Caregivers are responsive, but not in control of the interaction. This study challenges the belief that adults guide early attention and shows that […]