homehome Home chatchat Notifications


What an overheated Lithium-ion battery looks like, inside and out

Boom!

Tibi Puiu
April 29, 2015 @ 11:31 am

share Share

Lithium-ion batteries have pervaded most mobile technologies, including phones, notebooks or electric vehicles. Scientists involved in lithium-ion batteries are mainly interested in increasing the energy density so they can last longer and accelerating the charging time, but also avoiding failures. You can watch on YouTube a myriad of such fails, like batteries exploding and such. Thankfully, these events are particularly rare, yet they signal there’s still much room for improvement. University College London researchers were interested in studying how lithium-ion batteries perform under a certain kind of stress resulting from overheating, and recorded the first thermal failure using  thermal imaging and non-invasive high speed imaging techniques to observe the internal structure. This way, they recorded both what happens outside and inside the battery when it overheats.

Jets of molten material shoot out of Cell 1 after overheating. Credit: Shearing et al., Nature Communications

Jets of molten material shoot out of Cell 1 after overheating. Credit: Shearing et al., Nature Communications

This phenomenon is in fact called thermal runaway in literature – basically, it occurs when more heat is coming into the system than it exists. Paul Shearing and colleagues took two commercially available lithium-ion batteries, dubbed Cell 1 and Cell 2, then subjected them to an external heat source.  After 2 minutes the Cell 1 started venting molten material into its surrounding environment. Copper material inside Cell 1 melted, indicating internal temperatures of at least 1,085°C. As for Cell 2, the rapid pressure rise (temperature is directly proportional to pressure) caused its top lid to blow off entirely. In real-world applications, this additional oxygen coming through the open lid means even more thermal runaway. The videos below show how the two cells fail under the thermal load.


CELL 1


CELL 2

[RELATED] New lithium ion battery cathod can withstand 25,000 cycles. Your laptop battery only has 300

The authors found that thermal and electrochemical reactions inside both cells produced gas pockets that deformed the spiral wound layers of the cells. Cell 2 was the most compromised of the two batteries, structurally. Unlike Cell 2, Cell 1 was designed with a central cylindrical support, which seemed to help maintain structural integrity. The findings appeared in Nature; hopefully these will help design better lithium-ion batteries. Explosions are scary! Let’s have less of those…

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.