homehome Home chatchat Notifications


Power cell that both generates and stores energy by-passes batteries

Generating useful energy out of otherwise mundane activities has been a goal for scientists for many years. Bicycle dynamos that generate electrical current to power a headlight from the kinetic energy generated by the cyclist have been used since the turn of the last century. Modern approaches have gone to greater lengths, turning ones footsteps on […]

Tibi Puiu
December 7, 2012 @ 11:11 am

share Share

Georgia Tech researcher Zhong Lin Wang shows the tiny components of the new hybrid self-charging power cell that uses piezoelectric materials to directly convert mechanical energy to chemical energy  (c) Gary Meek

Georgia Tech researcher Zhong Lin Wang shows the tiny components of the new hybrid self-charging power cell that uses piezoelectric materials to directly convert mechanical energy to chemical energy (c) Gary Meek

Generating useful energy out of otherwise mundane activities has been a goal for scientists for many years. Bicycle dynamos that generate electrical current to power a headlight from the kinetic energy generated by the cyclist have been used since the turn of the last century. Modern approaches have gone to greater lengths, turning ones footsteps on special floor tiles into electricity or even charging laptops by converting the pressure applied by the user when typing.

If energy storage is a concern, however, all of these solutions need to adapt a system in which energy generation and storage are separate, the most common example being the traditional two-cell generator-storage system. Scientists at Georgia Institute of Technology, however, have developed a novel approach which allowed them to convert mechanical energy into chemical energy directly without an intermediate step. The  hybrid generator-storage cell, thus makes the need for a separate battery or storage unit redundant, greatly reducing weight. The cell stores the power until it is released as an electrical current.

(c)  Georgia Institute of Technology,

(c) Georgia Institute of Technology,

The hybrid power-generator cell is comprised of  a lithium-cobalt oxide (LiCoO2) cathode and a titanium dioxide anode (TiO2 nanotubes) separated by a PVDF film. Harnessing the piezoelectric effect, when pressure is applied to the cells, electric voltage is generated that moves lithium ions in the electrolyte from the cathode to the anode, charging the cell in the process.

Not only this, the approach is a lot more efficient too – the generator-storage cell will be as much as five times more efficient at converting mechanical energy to chemical energy as a traditional two-cell generator-storage system, according to Zhong Lin Wang, a Regents professor in the School of Materials Science and Engineering at the Georgia Institute of Technology.

“People are accustomed to considering electrical generation and storage as two separate operations done in two separate units,” he says. “We have put them together in a single hybrid unit to create a self-charging power cell, demonstrating a new technique for charge conversion and storage in one integrated unit.”

A slew of applications could open up for this hybrid cell. For one, considering its light weight, many kinetic activities could be harnessed, from smart tires that turn the pressure into electrical current, to very subtle devices that are powered by vibrations. Special boots or clothing systems could generate electricity to power mobile devices. Something like this could definitely prove useful to the military, and indeed it seems they’ve more than shown interest since funding for the research came from the Defense Advanced Research Projects Agency (DARPA), the US Air Force as well as the US Department of Energy, the National Science Foundation, and the Knowledge Innovation Program of the Chinese Academy of Sciences.

Findings were published in the journal Nano Letters.

source: Georgia Tech via Gizmag

share Share

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

The UAE Wants AI to Write Its Laws — What Could Possibly Go Wrong?

But can machines really grasp justice, fairness, and human rights?

AI Made Up a Science Term — Now It’s in 22 Papers

A mistranslated term and a scanning glitch birthed the bizarre phrase “vegetative electron microscopy”

Could This Saliva Test Catch Deadly Prostate Cancer Early?

Researchers say new genetic test detects aggressive cancers that PSA and MRIs often miss

This Tree Survives Lightning Strikes—and Uses Them to Kill Its Rivals

This rainforest giant thrives when its rivals burn