homehome Home chatchat Notifications


Cognitive computing milestone: IBM simulates 530 billon neurons and 100 trillion synapses

First initiated in 2008 by IBM, the Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program whose final goal is that of developing a new cognitive computer architecture based on the human brain. Recently, IBM announced it has reached an important milestone for its program after the company successfully simulated 10 billion neurons and 100 trillion […]

Tibi Puiu
November 19, 2012 @ 7:14 pm

share Share

First initiated in 2008 by IBM, the Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program whose final goal is that of developing a new cognitive computer architecture based on the human brain. Recently, IBM announced it has reached an important milestone for its program after the company successfully simulated 10 billion neurons and 100 trillion synapses on most powerful supercomputer.

It’s worth noting, however, before you get too exited, that the IBM researchers have not t built a biologically realistic simulation of the complete human brain – this is still a goal that is still many years away. Instead, the scientists devised a cognitive computing architecture called TrueNorth with 1010 neurons (10 billion) and 1014 synapses (100 trillion) that is inspired by the number of synapses in the human brain; meaning it’s modular, scalable, non-von Neumann, ultra-low power. The researchers hope that in the future this essential step might allow them to build an electronic neuromorphic machine technology that scales to biological level.

 “Computation (‘neurons’), memory (‘synapses’), and communication (‘axons,’ ‘dendrites’) are mathematically abstracted away from biological detail toward engineering goals of maximizing function (utility, applications) and minimizing cost (power, area, delay) and design complexity of hardware implementation,” reads the abstract for the Supercomputing 2012 (SC12) paper (full paper link).

Steps towards mimicking the full-power of the human brain

 Authors of the IBM paper(Left to Right) Theodore M. Wong, Pallab Datta, Steven K. Esser, Robert Preissl, Myron D. Flickner, Rathinakumar Appuswamy, William P. Risk, Horst D. Simon, Emmett McQuinn, Dharmendra S. Modha (Photo Credit: Hita Bambhania-Modha)

Authors of the IBM paper(Left to Right) Theodore M. Wong, Pallab Datta, Steven K. Esser, Robert Preissl, Myron D. Flickner, Rathinakumar Appuswamy, William P. Risk, Horst D. Simon, Emmett McQuinn, Dharmendra S. Modha (Photo Credit: Hita Bambhania-Modha)

IBM simulated the TrueNorth system running on the world’s fastest operating supercomputer, the Lawrence Livermore National Lab (LBNL) Blue Gene/Q Sequoia, using 96 racks (1,572,864 processor cores, 1.5 PB memory, 98,304 MPI processes, and 6,291,456 threads).

IBM and LBNL achieved an unprecedented scale of 2.084 billion neurosynaptic cores containing 53×1010  (530 billion) neurons and 1.37×1014 (100 trillion) synapses running only 1542 times slower than real time.

The tiny neurosynaptic core produced by IBM. (c) IBM

The tiny neurosynaptic core produced by IBM. (c) IBM

“Previously, we have demonstrated a neurosynaptic core and some of its applications,” continues the abstract. “We have also compiled the largest long-distance wiring diagram of the monkey brain. Now, imagine a network with over 2 billion of these neurosynaptic cores that are divided into 77 brain-inspired regions with probabilistic intra-region (“gray matter”) connectivity and monkey-brain-inspired inter-region (“white matter”) connectivity.

“This fulfills a core vision of the DARPA SyNAPSE project to bring together nanotechnology, neuroscience, and supercomputing to lay the foundation of a novel cognitive computing architecture that complements today’s von Neumann machines.”

According to Dr. Dharmendra S. Modha, IBM’s cognitive computing manager, his team goal is that of mimic processes of the human brain. While IBM competitors focus on computing systems that mimic the left part of the brain, processing information sequentially, Modha is working on replicating functions from the right part of the human brain, where information can be processed in parallel and where incredibly complex brain functions lie. To this end, the researchers combine neuroscience and supercomputing to reach their goals.

Imagine that the room-sized, cutting-edge, billion dollar technology used by IBM to scratch the surface of artificial human cognition still doesn’t come near our brain’s capabilities, which only occupies a fixed volume comparable to a 2L bottle of water and needs less power than a light bulb to work. The video below features Dr. Modha explaining his project in easy to understand manner and its only 5 minutes long.


source: KurzweilAI

 

share Share

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

The UAE Wants AI to Write Its Laws — What Could Possibly Go Wrong?

But can machines really grasp justice, fairness, and human rights?

AI Made Up a Science Term — Now It’s in 22 Papers

A mistranslated term and a scanning glitch birthed the bizarre phrase “vegetative electron microscopy”

Could This Saliva Test Catch Deadly Prostate Cancer Early?

Researchers say new genetic test detects aggressive cancers that PSA and MRIs often miss

This Tree Survives Lightning Strikes—and Uses Them to Kill Its Rivals

This rainforest giant thrives when its rivals burn

Engineers Made a Hologram You Can Actually Touch and It Feels Unreal

Users can grasp and manipulate 3D graphics in mid-air.

This Sensor Box Can Detect Deadly Bird Flu in 5 Minutes. But It Won't Stop the Current Outbreak

The biosensor can detect viral airborne particles.

Musk's DOGE Fires Federal Office That Regulates Tesla's Self-Driving Cars

Mass firings hit regulators overseeing self-driving cars. How convenient.