homehome Home chatchat Notifications


Harvesting wasted electricity: the triboelectric generators

With just one footstep, you can illuminate a thousand LED bulbs – with no batteries or power cord; the energy comes from rubbing two different materials together to create static electricity. A researcher called Zhong Lin Wang has finally learned how to harvest this power and put it to work. Triboelectricity? What’s that ?! A […]

Mihai Andrei
December 12, 2013 @ 10:37 am

share Share

With just one footstep, you can illuminate a thousand LED bulbs – with no batteries or power cord; the energy comes from rubbing two different materials together to create static electricity. A researcher called Zhong Lin Wang has finally learned how to harvest this power and put it to work.

Triboelectricity? What’s that ?!

A professor at the Georgia Institute of Technology, Wang is using what is called the triboelectric effect – a type of contact in which certain materials become electrically charged after they come into contact with another different material through friction. For example, when you rub glass with fur, or a comb through the hair, you are building triboelectricity. This has been known for a long time, nothing new here – but harvesting it… that’s an entirely different story, but Zhong figured it out.

He believes his discovery could potentially power mobile devices such as sensors and smartphones by capturing the otherwise wasted mechanical energy from walking, wind, and even rain. This is why, besides from powering electric devices, the technology could lead to a new generation of sensors, detecting vibrations, motion, water leaks, explosions, etc.

“We are able to deliver small amounts of portable power for today’s mobile and sensor applications,” said Wang, a Regents professor in Georgia Tech’s School of Materials Science and Engineering. “This opens up a source of energy by harvesting power from activities of all kinds.”

How it works

In its simplest form, a triboelectric generator works like this: you have 2 different materials – an electron donor and other an electron acceptor. Electrons flow from the donor to the acceptor. If the sheets are separated, one sheet holds an electrical charge isolated by the gap. If the electrical load is then connected to two electrodes placed at the outer edges of the two surfaces, a small current will flow to equalize the charges. If you continuously repeat this process (like in rubbing), you can generate an alternative current.

“The fact that an electric charge can be produced through triboelectrification is well known,” Wang explained. “What we have introduced is a gap separation technique that produces a voltage drop, which leads to a current flow in the external load, allowing the charge to be used. This generator can convert random mechanical energy from our environment into electric energy.”

When they initially started out, the energy out put was negligible. Since then, they managed to increase the power output density of their triboelectric generator by a factor of 100,000! This translates into a square meter of single-layer material producing as much as 300 watts.

“When two materials are in physical contact, the triboelectrification occurs,” said Wang, who holds the Hightower Chair in the Georgia Tech School of Materials Science and Engineering. “When they are moved apart, there is a gap distance created. To equalize the local charge, electrons have to flow. We are getting surprisingly high voltage and current flow from this. As of now, we have discovered four basic modes of triboelectric generators.”

Wang and his team accidentally discovered the power generating potential of the triboelectric effect while working on piezoelectric generators, which use an entirely different technology. The output from one of the piezoelectric device was way higher than expected – and this increased effect was found to be caused by triboelectricity.

Via Georgia Tech.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.