homehome Home chatchat Notifications


Ethereal glow might harbor the Universe's first objects

First discovered in 2005, and then studied in more depth since 2007, NASA scientists have finally isolated the ethereal glow thought to originate from the very first objects in the Universe with the highest precision yet. As seen in the image above, depicted in orange and red, the ‘lumpy’ infrared glow was observed using the […]

Tibi Puiu
June 11, 2012 @ 6:57 am

share Share

Glow harbors first objects in the universe. infrared imaged by Spitzer Space Telescope

First discovered in 2005, and then studied in more depth since 2007, NASA scientists have finally isolated the ethereal glow thought to originate from the very first objects in the Universe with the highest precision yet.

As seen in the image above, depicted in orange and red, the ‘lumpy’ infrared glow was observed using the ever faithful Spitzer Space Telescope, a remarkable device which has so far delivered numerous valuable scientific data about the cosmos. The scientists suggest the glow was given off by wildly massive stars or voracious black holes. The exact source can not be pinpointed with the available technology today, but what seems rather certain is that it originated from the very first objects in the Universe 13 billion years ago, shortly, in cosmic time that is, after the “Big Bang“, which is theorized to had occurred 13.7 billion years ago.

“All we can say is that these sources do not exist among the known galaxy populations, which have been observed to very early times (large distances),” said Alexander “Sasha” Kashlinsky, a NASA scientist who led the team that made the discovery. “This likely puts us within the first half-giga-year of the universe’s evolution, the epoch of first stars.”

The intriguing glow, known as cosmic infrared background, was first sighted by Spitzer in 2005, but only in recent years was the telescope able to isolate it. Scientists directed Spitzer at a region of interest in the sky — near the constellation Boötes — and studied it for over 400 hours, after which they carefully subtracted all of the known stars and galaxies in the images.

What remained were faint patterns of light with several telltale characteristics of the cosmic infrared background.

“These objects would have been tremendously bright,” says Alexander Kashlinsky of NASA’s Goddard Space Flight Center.

“We can’t yet directly rule out mysterious sources for this light that could be coming from our nearby universe, but it is now becoming increasingly likely that we are catching a glimpse of an ancient epoch. Spitzer is laying down a roadmap for NASA’s upcoming James Webb Telescope, which will tell us exactly what and where these first objects were.”

Their first light would have originated at visible or even ultraviolet wavelengths and then, because of the expansion of the universe, stretched out to the longer, infrared wavelengths observed by Spitzer. The telescope, however, has a short-wavelength view and thus can not answer unambiguously whether these objects were stars, black holes, galaxies or some previously unknown celestial formation. The new study measures this cosmic infrared background out to scales equivalent to two full moons – significantly larger than before. They plan to explore more patches of sky in the future.

“We hope to achieve this in the coming years (or months),” Kashlinsky said.

Such investigations would have access to a broader picture, and thus answers as well, once with the deployment of the highly anticipated James Webb Space Telescope, slated for launch in 2018. The James Webb Telescope is a massive, cutting-edge space telescope designed to orbit 1 million miles from Earth, where it would observe the mid-infrared portion of the electromagnetic spectrum. This would make it capable of gazing through some of the earliest forms of the Universe.

“This is one of the reason’s we are building the James Webb Space Telescope,” says Glenn Wahlgren, Spitzer program scientist. “Spitzer is giving us tantalizing clues, but James Webb will tell us what really lies at the era where stars first ignited.”

The findings were reported in the journal The Astrophysical Journal.

[source]

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Giant solar panels in space could deliver power to Earth around the clock by 2050

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Does a short nap actually boost your brain? Here's what the science says

We’ve all faced the feeling at some point. When the afternoon slump hits, your focus drifts and your eyelids start to drop; it’s tiring just to stay awake and you can’t fully refocus no matter how hard you try. Most of us simply power through, either with coffee or sheer will. But increasingly, research suggests […]

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.